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Introduction

- For many critical intelligence and surveillance applications a high
degree of human interaction is required to interpret events

- Thorough exploitation remains elusive due to ever-increasing
volume of data and points in time where data is missing

- Our is can we model and correlate events that happen in a
self-exciting process where the history has missing data
- Our is to develop missing data estimation for the Hawkes

process using Bayesian methods
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Temporal Hawkes Process

- Atemporal point process N(t) is characterized by its conditional
intensity A(t)

M= Tim (ENI(5 B AU /(AT)

- Conditional intensity often takes the form
A =p+a Y glt—ty)
R:tp<t

* where g(t) = Bexp(—4(1))
- Assume we have observed points given by x = (t,...,t,) on [0,T)
for some fixed time T > 0, the likelihood is

p(x|¢) = (Humt>exp AX(T)),

- where
= [y X*(sIHs) ds = M() + & Xy, < G(t— 1), M(t) = [, u(s)ds



Branching Structure

- Another view of the Hawkes process is to define it as a Poisson
cluster process:

The parents | follow a Poisson process with intensity

Each parent t; € | generates a cluster C;, where the clusters are
assumed to be independent

A cluster C; consists of points of offspring with the following structure:
Generation 0 consists of the parents. Recursively, each generation [
generates points of generation [+ 1, where the offspring are generated
as a Poisson process O; with intensity function g(t — t;).

The process, X is the union of all the clusters.

- The relationship of all points and their parents is known as the

- Denote by Y = {y;}, where y; = 0 means t; is a parent point and
yi =j means t; was an offspring of the point ¢; 3



Bayesian Parameter Estimation

- We will estimate using a Bayesian approach similar to (Rasmussen
2013) using a Metropolis-with-in-Gibbs approach

- The branching structure will be used to facilitate more
computationally efficient sampling and is estimated along with
parameters (Ross 2016)

- For example, to sample a new value of a**1 from p(alx, ¢, Y) where

n
p(alx, 6, ¥) o< m(e) [ [ exp(—aG(T = 18))al®l.
=i}

- The branching structure is sampled using the context of stochastic
declustering (Zhuang, Ogata, and Vere-Jones 2002) where the
probabilities of a point being a parent or offspring of the process
are
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Bayesian Missing Data Estimation

- Assume we have an interval, [Ty, T2] in which the observed points x
are missing on [0, T)

- Estimate missing data as part of Metropolis-Hastings Algorithm

- Will propose samples using the conditional intensity, current
parameters (¢), and history (x) up to time T,

- Simulated using the thinning method developed by (Ogata 1981)

- The Metropolis ratio for this missing data is

_ p(E9) p(x19)
p(x|9) p(Fr,|9)

t

- where tpiss and tmiss be the current and proposed set of missing

data and x = (tmiSSa tobs) and x = (tmi557 tobs)



- We generated a simulation of data from the model using the
parameters = .5, « = 0.9, and g = 10.
- The temporal region of interest was T = 100s
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- Arrival times for full data (blue) and arrival times with missing data
(orange)



Traceplots
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- The true values are shown by the orange line and the estimates by
the blue line

- Estimated parameters using the incomplete data are different and pu
is greatly underestimated /



Parameter Estimates Handling Missing Data
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- Accounting for the missing data we are able to recover closely the

true parameter
- However, the uncertainty is larger which relates to the fact we

estimated the missing data



Global Terrorism Database

- The Global Terrorism Database (2017) (GTD) is an open-source
database including information on terrorism events around the
world from 1970-2015

- For our study, we will look at the year span between 1990-1997 in
Columbia which had multiple problems with guerrillas,
paramilitaries, and narcotics

- The database is missing records for the entire year of 1993



Golobal Terrorism Database
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- Parameter estimates accounting for missing data increase, number
of estimated events on order of those recovered in the data set
- Not all data has been recovered
- Working out prediction currently



Conclusions

- Developed a parameter estimation procedure for the Hawke's
process that handles intervals of missing data in the history
- Used MCMC to estimate the missing data, branching structure, and
parameter estimates
- Utilizing the branching structure accounts for more efficient estimation
- Demonstrated the capability on simulated data and the Global
Terrorism Database
- Captured true parameter values with a larger confidence region

- Developing prediction comparison capabilities
- More efficient sampling schemes
- Only relied on a Metropolis-with-in-Gibbs approach
- Extension to marked point processes (spatio-temporal)
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Questions?
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