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Introduction

• For many critical intelligence and surveillance applications a high
degree of human interaction is required to interpret events

• Thorough exploitation remains elusive due to ever-increasing
volume of data and points in time where data is missing

• Our question is can we model and correlate events that happen in a
self-exciting process where the history has missing data

• Our method is to develop missing data estimation for the Hawkes
process using Bayesian methods
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Temporal Hawkes Process

• A temporal point process N(t) is characterized by its conditional
intensity λ(t)

λ(t) = lim
∆t↓0

(E[N{(t, t+∆t)}|Ht]/(∆t))

• Conditional intensity often takes the form

λ(t) = µ+ α
∑
k:tk<t

g(t− tk)

• where g(t) = β exp(−β(t))
• Assume we have observed points given by x = (t1, . . . , tn) on [0, T)
for some fixed time T > 0, the likelihood is

p(x|ϕ) =
( n∏
i=1

λ(ti|Hti)

)
exp(−Λ∗(T)),

• where
Λ∗(t) =

∫ t
0
λ∗(s|Hs)ds = M(t) +α

∑
k:tk<t G(t− tk), M(t) =

∫ t
0
µ(s)ds
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Branching Structure

• Another view of the Hawkes process is to define it as a Poisson
cluster process:

Branching Structure
1. The parents I follow a Poisson process with intensity µ

2. Each parent ti ∈ I generates a cluster Ci, where the clusters are
assumed to be independent

3. A cluster Ci consists of points of offspring with the following structure:
Generation 0 consists of the parents. Recursively, each generation l
generates points of generation l+1, where the offspring are generated
as a Poisson process Oj with intensity function g(t− tj).

4. The process, X is the union of all the clusters.

• The relationship of all points and their parents is known as the
branching structure

• Denote by Y = {yi}, where yi = 0 means ti is a parent point and
yi = j means ti was an offspring of the point tj 3



Bayesian Parameter Estimation

• We will estimate using a Bayesian approach similar to (Rasmussen
2013) using a Metropolis-with-in-Gibbs approach

• The branching structure will be used to facilitate more
computationally efficient sampling and is estimated along with
parameters (Ross 2016)

• For example, to sample a new value of α(k+1) from p(α|x, ϕ, Y) where

p(α|x, ϕ, Y) ∝ π(α)

n∏
i=1

exp(−αG(T− ti|β))α|Si|.

• The branching structure is sampled using the context of stochastic
declustering (Zhuang, Ogata, and Vere-Jones 2002) where the
probabilities of a point being a parent or offspring of the process
are

p(Y(k+1)
i = j|x, ϕ) =

{
µ

λ(t) if j = 0
αg(tj)
λ(t) if j ∈ 1, 2, . . . , i− 1.
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Bayesian Missing Data Estimation

• Assume we have an interval, [T1, T2] in which the observed points x
are missing on [0, T)

• Estimate missing data as part of Metropolis-Hastings Algorithm

• Will propose samples using the conditional intensity, current
parameters (ϕ), and history (x) up to time T1

• Simulated using the thinning method developed by (Ogata 1981)

• The Metropolis ratio for this missing data is

Ht =
p(x̃|ϕ)
p(x|ϕ)

p(xT2 |ϕ)
p(x̃T2 |ϕ)

• where tmiss and t̃miss be the current and proposed set of missing
data and x = (tmiss, tobs) and x̃ = (̃tmiss, tobs)
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Simulations

• We generated a simulation of data from the model using the
parameters µ = .5, α = 0.9, and β = 10.

• The temporal region of interest was T = 100s

• Arrival times for full data (blue) and arrival times with missing data
(orange)
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Traceplots

• The true values are shown by the orange line and the estimates by
the blue line

• Estimated parameters using the incomplete data are different and µ

is greatly underestimated 7



Parameter Estimates Handling Missing Data

• Accounting for the missing data we are able to recover closely the
true parameter

• However, the uncertainty is larger which relates to the fact we
estimated the missing data 8



Global Terrorism Database

• The Global Terrorism Database (2017) (GTD) is an open-source
database including information on terrorism events around the
world from 1970-2015

• For our study, we will look at the year span between 1990-1997 in
Columbia which had multiple problems with guerrillas,
paramilitaries, and narcotics

• The database is missing records for the entire year of 1993
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Golobal Terrorism Database

• Parameter estimates accounting for missing data increase, number
of estimated events on order of those recovered in the data set

• Not all data has been recovered
• Working out prediction currently 10



Conclusions

• Developed a parameter estimation procedure for the Hawke’s
process that handles intervals of missing data in the history

• Used MCMC to estimate the missing data, branching structure, and
parameter estimates

• Utilizing the branching structure accounts for more efficient estimation
• Demonstrated the capability on simulated data and the Global
Terrorism Database

• Captured true parameter values with a larger confidence region

Future Work

• Developing prediction comparison capabilities
• More efficient sampling schemes

• Only relied on a Metropolis-with-in-Gibbs approach
• Extension to marked point processes (spatio-temporal)
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Questions?
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