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Data analysis and Bayesian methods

e The Bayesian paradigm is optimal, and unquestionably the
correct way to make inference—except for a few troublesome
details

e Choice of prior distribution
e Choice of loss function
e Choice of likelihood

e For each of these pieces, we should be concerned about the
impact of misspecification on understanding and inference

e The likelihood is the focus of this talk

e Particularly problematic — doesn't ‘wash out’ with large
samples



Example: Large Corporate Data Bases

e Nationwide Insurance Company offers a broad array of finance
and insurance products. These products have historically been
sold and serviced through a network of agents

e Understanding drivers of agency growth and forecasting
performance is of great interest

e Focus here is on the number of households having policies
through a given agency

e Salient features of the data include the closure of some
agencies (e.g., through retirement of the principal agent),
varying contractual details with agents, and differing behavior
by state



Household count by agency

2012

2010

e Handling outliers: discard, model directly
e Model misspecification: outliers arise from transitory
phenomena
e Also:
e Imperfect data quality, from various sources; sliding definitions
of categories/terms; constantly changing systems (government
regulations, pricing policies, competition)



The Blended Paradigm

e Strategy: Decide when an attempt to model and include a
phenomenon will result in an overall deterioration of inference.
Trim this bit of the model or this part of the data

e Framework for restricted likelihood

Fyl0) = F(TWIO (v[T(y),0)

e Look for a good T(y) (non-sufficient)
e Drop the term f(y|T(y),0)

e What is a good statistic? Often, one for which the final

inference is relatively insensitive to plausible variations in the
likelihood f(y|6)

o Connected to other restricted likelihood methods (Hoff, rank
likelihood; Clarke, mean likelihood; ABC; many more)



The Blended Paradigm

e Base Model: 0 ~ 7(0), y ~ f(y|0)

o Full posterior:
m(0]y) oc w(0)f(y0)

o Restricted (blended) posterior:

(01T (y)) o m(O)f (T (¥)I0)



Implementation

e The blended paradigm models are rarely conjugate,
computational methods are needed to fit them

e Low dimensional problems-grid estimation techniques

e High dimensional problems-MCMC
e Any standard algorithm as the base
e Data augmentation [y| T (y), 6]

e Step may be simple (order statistics, trimming) or difficult
(M-estimators)



MCMC

e Data augmentation — fill in y from the appropriate conditional
distribution

e Metropolis-Hastings step to move from one augmentation to
another

N

e Conditioning statistic in regression setting: T(y) = (/3,5?)

e Evaluation of the proposal density is tricky as one must match
observed estimates of 3 and 2

e Using initial proposal: rescale and recenter to match the
observed estimates

o Need density of the resulting proposal, accounting for Jacobian



Example — T(y) : miny =0,> (y; — miny)®> =1
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attenuation: cos(y)
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Modeling household count by agency

e A standard, normal-theory regression model as the base

B ~N(u,0°%0); 0 ~1G(a, bo)
y=XB+e  e~N(0,0°)

e The data

e Household count square-rooted to stabilize variance
e Covariates consist of three measures of agency size
e Covariates and response centered and scaled to anonymize data

e Analyses include
o full-likelihood analysis, restricted-likelihood analysis (Huber

and Tukey M-estimators), thick-tailed model



Cross-validation study

Fit on a random sample of data

Predict on the holdout set; compute mean of log marginals
across holdout set as a measure of model fit

Repeat 100 times, collect and average the model fit measures
from each fold

Model evaluation is tricky
e Interest primarily lies in Type 1 agencies (most numerous)
e Holdout sets also contain outliers; do we want to include these
in the evaluation?
e Trim lowest log marginals (according to a single model) before
calculating average (use several trimming proportions)
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log Marginals-Type 1 Agencies

Blended-Tukey; Blended-Huber; thick tailed-t; normal; ols

fitting size: 2000
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Summary

e A major question in applied work is when to stop modeling

e Common practice is to exclude covariates, to reduce
dimensionality of response, to preprocess measurements, etc.

e Decision is based on whether, by stretching to include more in
the model, overall model suffers

o Outliers often removed before formal analysis
e Bayesian traditions differ (a little)

e Model everything, including outliers

e A complete model can be used to generate data
¢ Robust estimation traditions differ (a lot)

o Model as little as possible; omit case analyses

e Create estimator that is insensitive to certain facets of the data



Summary

e Blend the two approaches
e Avoid attempting to model transitory phenomena
o Use likelihood from robust estimators for Bayesian update

o Get benefits of posterior for use in making decisions

e Consider these methods any time you worry about the
likelihood,
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and you should always worry about the likelihood ...
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