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Abstract

Bayesian methods have proven themselves to be successful across a wide

range of scientific problems and have many well-documented advantages over

competing methods. However, these methods run into difficulties for two major

and prevalent classes of problems: handling data sets with outliers and dealing

with model misspecification. We outline the drawbacks of previous solutions to

both of these problems (e.g., use of heavy-tailed likelihoods) and propose the

restricted likelihood as an alternative. When working with restricted likelihood,

we summarize the data through a set of (insufficient) statistics, targeting infer-

ential quantities of interest, and update the prior distribution with the summary

statistics rather than the complete data. By choice of conditioning statistics, we

retain the main benefits of Bayesian methods while reducing the sensitivity of

the analysis to features of the data not picked up by the conditioning statistics.

A major contribution is the development of a data augmented MCMC algo-

rithm for the linear model and a wide range of choices for summary statistics.

∗This research has been supported by Nationwide Insurance Company and by the NSF under
grant numbers DMS-1007682 and DMS-1209194. The views in this paper are not necessarily those
of Nationwide Insurance or the NSF.
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We demonstrate the method on an insurance agency data set containing many

outliers and subject to model misspecification. Success is manifested in better

predictive performance for data points of interest as compared to competing

methods.

KEYWORDS: Approximate Bayesian computation, Markov chain Monte Carlo,

M-estimation, Robust regression.

1 Introduction

Bayesian methods have provided successful solutions to a wide range of scientific prob-

lems, with their value having been demonstrated both empirically and theoretically.

In simple settings, the success of the methods is often attributed to formal optimality

properties, sometimes derived through the laws of subjective probability and some-

times through admissibility and the complete class theorems of decision theory. In

complex settings, the hierarchical model allows one to create and fit sophisticated

models that may, for example, pool information across similar problems.

The development of Bayesian inference relies on a complete Bayesian model con-

sisting of three elements: the prior distribution, the loss function, and the likelihood

or sampling density. While formal optimality of Bayesian methods is unquestioned if

one accepts the validity of all three of these elements, a healthy skepticism encourages

us to question each of them. Concern about the prior distribution has been addressed

through the development of techniques for subjective elicitation (Garthwaite et al.,

2005) and the rise of objective Bayesian methods (Berger, 2006). Concern about the

loss function is reflected in, for example, the extensive literature on Bayesian hypothe-

sis tests (Kass and Raftery, 1995). The sampling density has been given less attention

from a specifically Bayesian view, although the work on predictive diagnostics (Box,
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1980) departs from classical traditions.

The focus of this work is the intersection of Bayesian methodology and data anal-

ysis. In particular, we develop techniques to handle imperfections in the sampling

density. These imperfections often show themselves through the presence of outliers–

here taken to be cases not reflecting the phenomenon under study–in the data set.

There are three main solutions to Bayesian outlier-handling. The first is to replace

the basic sampling density with a mixture model which includes one component for

the “good” data and a second component for the “bad” data. With this approach,

the prior distribution is updated with the likelihood from the mixture model to ob-

tain the complete-data posterior distribution. The good component of the sampling

density is used for prediction of future good data. The second approach replaces the

basic sampling density with a thick-tailed density in an attempt to discount outliers,

yielding techniques that often provide solid estimates of the center of the distribu-

tion but do not easily translate to predictive densities for further good data. The

third approach fits a flexible (typically nonparametric) model to the data, producing

a Bayesian version of a density estimate for both good and bad data. In recent de-

velopment, inference is made through the use of robust inference functions (Lee and

MacEachern, 2014, in press).

The traditional strategies for handling outliers all have their drawbacks. While

we view the sampling density for the good data as stable, the outlier-generating

processes may be transitory in nature, constantly shifting as the source of bad data

changes. This prevents us from appealing to large-sample arguments to claim that,

with enough data, we can nail down a model for both good and bad data combined.

Instead of attempting to model both good and bad data, we propose a novel strategy

for handling outliers: the use of restricted likelihood. In a nutshell, we begin with

a complete model as if all of the data are good. But rather than driving the move
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from prior distribution to posterior distribution by the entire likelihood, we use only

the likelihood of a few summary statistics which typically target inferential quantities

of interest. We call this reduced likelihood a restricted likelihood. The update is a

formal update from prior distribution to posterior distribution, based on the sampling

density of the summary statistics. In our approach, the reader will identify a stream

of reasoning which is manifested in classical M-estimation, generalized estimating

equations, approximate Bayesian computation, and elsewhere. The novelty of the

work is twofold. We make use of classical robust estimators as summary statistics

in a formal Bayesian framework, using the sampling density of the estimators as a

replacement for the sampling density of the data. We advance the argument that

conditioning on an insufficient summary of the data is sound practice, rather than

merely being done for computational and modelling convenience.

In addition to outlier-prone data, the sampling density can err due to model

misspecification. The traditional view is that, if the model is inadequate, one should

build a better model. In our empirical work, as data sets have become larger and

more complex, we have bumped into settings where we cannot realistically build the

perfect model. We ask the question “by attempting to improve our model through

elaboration, will the overall performance of the model suffer?” If yes, we avoid the

elaboration, retaining a model with some level of misspecification. Acknowledging

that the model is misspecified implies acknowledging that the sampling density is

incorrect, exactly as we do when outliers are present. In this sense, misspecified

models and outliers are reflections of the same phenomenon, and we recommend a

common solution for dealing with the problem.

The remainder of the paper develops Bayesian restricted likelihood (Section 2),

shows how it can be applied to a Bayesian linear model (Section 3), illustrates its use

on an insurance agencies data set with a novel twist on model evaluation (Section 4),
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and wraps up with a discussion (Section 5). A major contribution of this work is the

computational strategy whose legitimacy is established in Section 3 and the technical

proofs are in the appendix.

2 Restricted Likelihood

To describe the use of restricted likelihood in a Bayesian framework, we begin with

a pair of simple examples for the one-sample problem. In each, the model takes the

data y = (y1, . . . , yn) to be a random sample of size n from a continuous distribution

indexed by a parameter vector θ. The standard, or complete, likelihood would be

L(θ|y) =
�n

i=1 f(yi|θ).

As a first example, we consider the case where a subset of the data are known to

be bad in the sense of not informing us about θ–and where the subset is known. This

case mimics the setting where outliers in a data set are identified and discarded before

a formal analysis is done. Without loss of generality, we label the good cases 1 through

n − k and the bad cases n − k + 1 through n. The relevant likelihood to be used to

move from prior distribution to posterior distribution is clearly L(θ|y1, . . . , yn−k) =
�n−k

i=1 f(yi|θ). For an equivalent analysis, we rewrite the entire likelihood as the

product of two pieces,

L(θ|y) =

�
n−k�

i=1

f(yi|θ)

��
n�

i=n−k+1

f(yi|θ)

�
. (1)

We wish to keep the first piece and drop the second for better inference on θ.

A second example involves deliberate censoring of small and large observations.

This is sometimes done as a precursor to the analysis of reaction time experiments

(e.g., Ratcliff (1993)). With lower and upper censoring times at t1 and t2, the post-
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censoring sampling distribution is of mixed form, with masses F (t1|θ) at t1 and

1− F (t2|θ) at t2, and density f(y|θ) for y ∈ (t1, t2). We adjust the original data yi,

producing xi by defining xi = t1 if yi ≤ t1, xi = t2 if yi ≥ t2, and xi = yi otherwise.

The adjusted update is performed with L(θ|x). With slightly non-standard notation,

we let g(t1|θ) = F (t1|θ), g(t2|θ) = 1 − F (t2|θ), and g(y|θ) = f(y|θ) for y ∈ (t1, t2).

Alternatively, we may rewrite the entire likelihood as the product of two pieces,

L(θ|y) =

�
n�

i=1

g(xi|θ)

��
n�

i=1

f(yi|xi, θ)

�
, (2)

and retain only the first for the formal update.

Further examples abound. In a completely randomized experimental design, we

randomize experimental units to treatment conditions and then ignore the observed

randomization (Dean and Voss, 1999); in work with contingency tables, we collapse

categories with small counts, coarsening the scale of data (Agresti, 2002); in meta-

analysis, we ignore the individual patient-level data and instead work with estimated

effects from the studies (O’Rourke, 2007). The reader will supply many more ex-

amples. To describe the approach in (1), (2), and these other settings, we write the

complete data likelihood in two pieces, as indicated below:

L(θ|y) = f(T (y)|θ) f(y|T (y), θ). (3)

In the dropped case example, the conditioning statistic is T (y) = (y1, . . . , yn−k). In

the censoring example, the conditioning statistic is T (y) = (x1, . . . , xn). We refer to

f(T (y)|θ) as the restricted likelihood.

Bayesian methods can make use of restricted likelihood in place of the complete

data likelihood since T (y) is a well-defined random variable with a probability distri-

bution indexed by θ. The update from prior distribution to posterior distribution is
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given by the restricted likelihood posterior

π(θ|T (y)) =
π(θ)f(T (y)|θ)

m(T (y))
, (4)

where m(T (y)) is the marginal distribution of T (y) under the prior distribution. Pre-

dictive statements for further (good) data rely on the model. For another observation,

say yn+1, we would have the predictive density

f(yn+1|T (y)) =

�
f(yn+1|θ)π(θ|T (y)) dθ.

Direct use of restricted likelihood appears in many areas of the literature. The

motivation is often similar to ours: concern about model misspecification. For exam-

ple, the use of rank likelihoods is discussed by Savage (1969), Pettitt (1983, 1982),

and more recently by Hoff et al. (2013). Asymptotic properties of restricted posteriors

are studied by Doksum and Lo (1990), Clarke and Ghosh (1995), Yuan and Clarke

(2004), and Hwang et al. (2005). The tenor of these results is that, for a variety

of conditioning statistics with non-trivial regularity conditions on prior, model, and

likelihood, the posterior distribution resembles the asymptotic sampling distribution

of the conditioning statistic.

Restricted likelihoods have also been used as practical approximations to the full

likelihood. For example, Pratt (1965) appeals to heuristic arguments regarding ap-

proximate sufficiency to justify the use of the restricted likelihood of the sample mean

and standard deviation. Approximate sufficiency is often appealed to when applying

approximate Bayesian computation (ABC), a collection of posterior approximation

methods which has recently experienced success in applications to epidemiology, ge-

netics, and quality control (see, for example, Tavaré et al., 1997; Pritchard et al.,

1999; Marjoram et al., 2003; Fearnhead and Prangle, 2012). ABC is typically used
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when likelihoods are intractable but simulation of new data from the model is eas-

ily done. In the cited references, interest lies in the full data posterior and ABC is

used for computational convenience. Consequently, effort is made to choose a T (y)

such that the likelihood L(θ|y) ≈ L(θ|T (y)). Technical limitations of ABC imply

that in realistic (and all non-discrete) settings, the conditioning is not exact, but

approximate.

In a related, but distinctly different, method which also takes advantage of sum-

mary statistics, the full data log likelihood is replaced by a loss function (e.g. Bissiri

et al., 2013) in an effort to concentrate inference only on parameters of interest. In

contrast, the restricted likelihood is formulated using a full probability model, allowing

for a formal Bayesian update, while remaining robust to misspecification. This work

extends the use of restricted likelihood by arguing that their use is sound practice,

and also by expanding the class of conditioning statistics in which exact conditioning

can be achieved well beyond ranks. Our methods do not rely on asymptotic properties

as in previous work.

The key to productive use of restricted likelihood is the choice of T (y) and the

development of computational strategies that allow us to truly condition on the ob-

served T (y) and fit the model in formal Bayesian fashion. In this work, we focus

on robustness, and natural choices of T (y) include a set of middling order statistics,

a trimmed mean, or a classical robust estimator of location and/or scale. We have

previously implemented all of these methods for one-sample problems where we have

found them to perform well (e.g., Lewis et al. (2012)). Of these versions, the most

extensible to the linear model are the M-estimators, in the tradition of Huber (1964).

The next section develops the necessary computational strategies.
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3 Restricted Likelihood for the Linear Model

3.1 The Bayesian linear model

We focus on the use of restricted likelihood for the Bayesian linear model with a

standard formulation:

β ∼ π1(β); σ
2
∼ π2(σ

2)

yi = x
�
i β + �i, for i = 1, . . . , n (5)

where xi and β ∈ Rp. Two conditions are imposed on the model:

C1. The n× p design matrix, X, whose i
th row is x

�
i , is of full column rank.

C2. The �i are a random sample from some distribution which has a density with

respect to Lebesgue measure on the real line and for which the support is the

real line.

Both conditions can be relaxed, although this would necessitate restating several

later results. In the sequel, we consider both normal and t distributions with mean

0 and variance σ
2 for the �i. The prior distributions π1 and π2 can take many forms

and may be joined to form a joint distribution for non-independent β and σ
2. The

conditionally conjugate normal/inverse gamma pair is a common choice.

The methods we develop apply to the linear model in (5) and to many variations

on it. As summary statistics for θ = (β, σ), we consider M-estimators for the linear

model and an associated estimator of the scale σ. The M-estimator of β is determined

by a ρ function through the minimization

b(X, y) = argmin
β

n�

i=1

ρ(
yi − x

�
i β

σ
). (6)
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The scale estimator s(X,y) is determined simultaneously as another M-estimator or is

determined through a separate calculation, for example the mean-absolute-deviation

from an �1 regression fit. Continuity of the distribution of the �i is important as

it translates into a continuous distribution for b, which is presumed for our com-

putational strategy. The results we derive also apply to estimators that are not

M-estimators.

3.2 Computational strategy

Direct computational strategies are available for low-dimensional T (y) and θ, as used

in Lewis et al. (2012). These strategies rely on generation of complete data sets from

different values of θ. The complete data are then used to estimate the density of

T (yobs) which is then fed into Bayes theorem for the update from prior distribution

to posterior distribution. Variance reduction techniques improve the performance of

these strategies.

For high-dimensional statistics T (y) or high-dimensional parameters θ, direct

computational strategies break down. When the conditioning statistic is of high-

dimension, density estimation becomes difficult and the associated approximate up-

date in (4) is unstable; when θ is high dimensional, grid-based calculation and other

numerical integration strategies fail. However, Markov chain Monte Carlo (MCMC)

methods were developed for exactly these situations. We turn to MCMC to fit the

model in these circumstances.

The general style of algorithm that we present relies on the decomposition of the

sampling density in (3) into one piece involving only T (y) and a second piece for the

complete data y given T (y). Relying on the modularity of MCMC algorithms, we

begin with any conventional complete data algorithm. In the case of typical regres-

sion models, these algorithms abound. Details of the algorithm depend on details of
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the prior distribution and sampling density. As examples, a normal prior distribu-

tion and normal likelihood in the regression setting allow one to alternate conditional

generations of σ
2 and β, and blocking the generation of β generally leads to quicker

convergence and mixing (Liu, 1994); a thick-tailed scale mixture of normal distribu-

tions in the style of the hyper-g/n prior (Liang et al., 2008) necessitates an additional

stage for the sampler where the scale g/n is generated; a thick-tailed sampling density

such as a t distribution can be handled with the addition of a scale parameter for each

case and an extra stage where these scale parameters are generated. The additional

stage needed to implement the restricted likelihood analysis via MCMC is a gener-

ation of the complete data given statistic (T (yobs)) and parameter (θ). Condition

C2 facilitates the extension of convergence proofs for the complete data algorithm to

those for the incomplete data algorithm. In this subsection, we focus exclusively on

the additional stage.

For a typical model and conditioning statistic, the distribution [y|θ, T (y)] is not

available in closed form. As a consequence, we turn to Metropolis-Hastings, using

the strategy of proposing the complete data y with summary statistic matching T (y)

and either accepting or rejecting the proposal. The Metropolis-Hastings acceptance

ratio is given by the expression below, truncated above at 1, where yp represents the

proposed complete data and yc is the current complete data.

R =
f(yp|θ, T (yp) = T (yobs))

f(yc|θ, T (yc) = T (yobs))

p(yc|θ, T (yc) = T (yobs))

p(yp|θ, T (yp) = T (yobs))
(7)

=
f(yp|θ)

f(yc|θ)

p(yc|θ)

p(yp|θ)
(8)

The expression p(·) gives the proposal density. The second line follows from the fact

that T (yp) = T (yc) = T (yobs) for all current and proposed data sets. For the models

we consider, evaluation of f(y|θ) is straightforward. We focus on construction of
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proposals that guarantee T (y) = T (yobs) for the linear model and on the evaluation

of the proposal density.

3.2.1 Construction of proposal

Our computational strategy is easiest to envision in a simple location-scale setting

where the design matrix consists of a single column of ones. Robust estimation

techniques along with model (5) suggest a conditioning statistic T (y) which consists

of estimates of the scalars β and σ, say (b(X, y), s(X, y)). To obtain data y for which

T (y) = T (yobs), we proceed in two steps. First, a vector z∗ is generated from a simple

manifold with known density, for example, a uniform distribution on the surface of

the unit sphere in Rn−1 (alternatively from the model with current values of β and σ).

This leads to T (z∗) = (b(X, z∗), s(X, z∗)). The vector z∗ is mapped into a vector y

by rescaling and shifting appropriately to match the observed conditioning statistic.

For typical estimators, the appropriate scaling is s(X,yobs)/s(X, z∗) with the shift

trailing along as needed to match b(X, yobs). To evaluate the proposal density of

y, we need to adjust the density of z∗ with a Jacobian. In the sequel, we use this

artificially low-dimensional example to illustrate the method.

The strategy described in the previous paragraph extends to full-blown regression

models. Robust regression methods lead naturally to a conditioning statistic in the

form of a classical M-estimator for β and a companion estimator for σ. We denote

the resulting estimator which involves the covariates through the design matrix and

the response as T (y) = (b(X, y), s(X, y)), with b(X, y) = (b1(X, y), · · · , bp(X, y))�.

Simultaneous M-estimators have a number of standard properties C3-C8 which prove

useful in the sequel (Huber and Ronchetti, 2009; Maronna et al., 2006).

C3. b(X, y) is almost surely continuous and differentiable with respect to y.
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C4. s(X, y) is almost surely positive, continuous, and differentiable with respect to

y.

C5. b(X, y + Xv) = b(X, y) + v for all v ∈ Rp.

C6. b(X, ay) = ab(X, y) for all constants a.

C7. s(X, y + Xv) = s(X, y) for all v ∈ Rp.

C8. s(X, ay) = |a|s(X, y) for all constants a.

Properties C5 and C6 of b are called regression and scale equivariance, respectively.

Properties C7 and C8 of s are called regression invariance and scale equivariance.

Many other estimators satisfy these properties, and our subsequent results apply

equally well to them. With more cumbersome statements, the upcoming results can

be adjusted to handle a relaxation of C4 that s(X, yobs) > 0 and P (s(X, y) > 0) > 0.

The properties above ensure that any vector y∗ ∈ Rn can be transformed to

another vector, y so that T (y) = T (yobs). The mechanism by which this happens

is the scaling and shifting presented in the following theorem. The proof of this and

other results appear in the appendix.

Theorem 3.1. Assume that conditions C4-C8 hold. Then, any vector y∗ ∈ Rn

with conditioning statistic T (y∗) can be transformed into y with conditioning statistic

T (y) = T (yobs) through the transformation

y =
s(X, yobs)

s(X, y∗)
y∗ + X

�
b(X, yobs)− b(X,

s(X, yobs)

s(X, y∗)
y∗)

�
.

The mapping described in Theorem 3.1 is many-to-one in general. The range of

the mapping is the sample space restricted to match the observed summary statistic:

A = {y ∈ Rn
|T (y) = T (yobs)}. (9)
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Figure 1: A depiction of A, Π(A), and the unit circle for the illustrative example where
b1(1, y) = min(y) = 0 and s(1, y) =

�
(yi − b1(1, y))2 = 1. A is the combination

of three quarter circles, one on each plane defined by yi = 0. The projection of this
manifold onto the deviation space is depicted by the bowed triangular shape in the
plane defined by

�
yi = 0. The circle in this plane represents the sample space for

the intermediate sample. Also depicted is the vector 1, the design matrix for the
location and scale setting.

A is an n−p−1 dimensional space: there are p constraints imposed by the regression

coefficients and one further constraint imposed by the scale. The form of the set

is determined by the statistic T (y). Figure 1 provides an artificial low-dimensional

example of such a set A. In the figure, n = 3, and the model is a location-scale model

with conditioning statistic T (y) = (min(y),
�

(yi−min(y))2). The set A is depicted

for T (yobs) = (0, 1) and is a “warped triangle”, with each side corresponding to a

particular coordinate of y being the minimum. The set may be compact and given

by a closed curve, as in the figure, or it may be unbounded.

The set A typically does not lie in a linear space of dimension n − p − 1, and so

we must account for both the many-to-one nature of the mapping and a Jacobian

when deriving the proposal density. We handle the first point by proposing a vector

z∗ on an n− p− 1 dimensional space which, through a scaling and shifting, maps to
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a point in A uniquely. The initial proposal is chosen so that the range of the map is

the entirety of A. The Jacobian does not cancel in (7), since the scaling depends on

the initial proposal.

Figure 1 shows the type of set from which we draw the initial proposal. Denote

the column space of the design matrix X by C(X) and its orthogonal complement

by C⊥(X). We often refer to the latter set as the ‘deviation space’ as it is the space

where the traditional least squares residuals are contained. We define the projection

of the set A onto the deviation space as

Π(A) = {z ∈ Rn
| ∃ y ∈ A s.t. z = Qy} (10)

where Q is the projection matrix onto C⊥(X). Explicitly, Q = I−H with H = XX
�

where we assume without loss of generality, following condition C1, that the columns

of X form an orthonormal basis for C(X) (i.e., X
�
X = I). It will also be helpful at

times to write Q = WW
� where the columns of W form an orthonormal basis for

C⊥(X).

The initial proposal is drawn from the surface of the unit sphere in the n − p

dimensional C⊥(X). In the figure, the column vector 1 spans C(X), the triangle with

bowed sides is the projection of A onto C⊥(X), and the circle is the set from which

the initial proposal is drawn.

For an initial proposal z∗ on the surface of the sphere, we move to a point on

Π(A) through a simple scaling of the point z∗. This is followed by undoing the

projection with a move from Π(A) to its (unique) preimage on A. Together, these

two steps correspond to the transformation in Theorem 3.1. The introduction of the

initial proposal surface gives us a 1-1 transformation. Properties C5-C8 ensure the

mapping described is indeed 1-1. In particular, property C8 ensures the scaling to be
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unique and C7 implies the scale statistic is unchanged when undoing the projection.

Property C5 ensures the uniqueness of undoing the projection.

The general proposal strategy is summarized as follows

1. Sample z∗ from a distribution with known density on the unit sphere in C⊥(X).

2. Consider the transformation in Theorem 3.1 in two steps

(a) Scale: z = s(X,yobs)
s(X,z∗) z∗

(b) Shift: y = z + X (b(X, yobs)− b(X, z))

3.2.2 Evaluation of the proposal density

Calculation of the appropriate Jacobian of the transformation is absolutely vital and

also non-trivial. Writing the transformation from the unit sphere in deviation space

to A in two steps facilitates calculation of the Jacobian in two steps.

From unit sphere to Π(A)

The first step is constrained to C⊥(X) where the unit sphere is transformed to Π(A).

We further break this piece in two steps: first, the distribution of the unit sphere is

transformed to that along a sphere of radius r = �z� = s(X, yobs)/s(X, z∗). This

contributes r
−(n−p−1) to the Jacobian. Second, the new sphere is then deformed to

Π(A). This deformation contributes an attenuation to the Jacobian equal to the

ratio of infinitesimal volumes in the tangent spaces of the sphere and Π(A) at z.

Restricting ourselves to the n− p dimensional space C⊥(X), this ratio is the cosine of

the angle between the normal vectors of the two sets at z. The normal to the sphere

is simply z and the normal to Π(A) is given in the following lemma.

Lemma 3.2. Assume that conditions C1-C2, C4, and C7 hold. Let y ∈ A. Let

∇s(X, y) denote the gradient of the scale statistic with respect to the data vector
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evaluated at y. Then ∇s(X, y) ∈ C⊥(X) and is normal to Π(A) at z = Qy in

C⊥(X).

The contribution to the Jacobian of this attenuation is seen to be

cos(γ) =
∇s(X, y)�z

�∇s(X, y)��z�
, (11)

where γ is the angle between the two normal vectors. This step is illustrated in

Figure 2 for the toy location-scale example.

(a)

●

●

(b)

●

Figure 2: Panel (a) contains a depiction of the stretch from z∗ to z. The adjustment
for the stretch transforms the density along the unit circle to the density along the
circle of radius �z� (dashed circle). Panel (b) contains a depiction of the deformation
from the distribution along the circle to the distribution along Π(A). The adjustment
can be seen to be the cosine of the angle between the normals to each manifold.

From Π(A) to A

The final piece of the Jacobian comes from the transformation from Π(A) to A. For

this we return to the full n dimensional space. The second step involves a shift

of z to y along the column space of X, but the shift depends on z, and so the

density on the set Π(A) is deformed by the shift. The contribution of this step to
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the Jacobian is, from first principles, the ratio of the infinitesimal volume along Π(A)

to the corresponding volume along A. The ratio is calculated by considering the

volume of the projection of a unit hypercube in the tangent space of A at y onto

C⊥(X). Computational details are given in the following lemmas and subsequent

theorem. Throughout, let Ty(A) and T ⊥
y (A) denote the tangent space to A at y and

its orthogonal complement respectively.

Lemma 3.3. Assume that conditions C1-C5 and C7-C8 hold. Then the p+1 gradient

vectors ∇s(X,y),∇b1(X, y), . . . ,∇bp(X, y) form a basis for T ⊥
y (A) with probability

one.

The lemma describes construction of a basis for T ⊥
y (A). This leads to a basis for

Ty(A). Both of these bases can be orthonormalized. Let B = [b1, . . . , bp+1] and A =

[a1, . . . , an−p−1] denote the matrices whose columns contain these two orthonormal

bases. The columns in A define a unit hypercube in Ty(A) and their projections onto

C⊥(X) define a parallelepiped. We defer construction of A until later.

Lemma 3.4. Assume that conditions C1-C5 and C7-C8 hold. Then the n×(n−p−1)

dimensional matrix P = QA is of full column rank.

As a consequence of this lemma, the parallelepiped spanned by the columns of P

is not degenerate (it is n− p− 1 dimensional), and its volume is simply given by

Vol(P ) :=
�

det(P�P ) =
r�

i=1

σi (12)

where r = rank(P ) = n− p− 1 and σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the singular values of

P (e.g., Miao and Ben-Israel (1992)). Combining Lemmas 3.3 and 3.4 above leaves

us with the following result concerning the calculation of the desired Jacobian.
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Theorem 3.5. Assume that conditions C1-C5 and C7-C8 hold. Then the Jacobian

of the transformation from the distribution along Π(A) to that along A is equal to the

volume given in (12).

The proposal density

Putting all the pieces of the Jacobian together we have the following result. Any

dependence on other variables, including current states in the Markov chain, is made

implicit.

Theorem 3.6. Assume that conditions C1-C8 hold. Let z∗ be sampled on the unit

sphere in C⊥(X) with density p(z∗). Using the transformation of z∗ to y ∈ A de-

scribed in Theorem 3.1, the density of y is

p(y) = p(z∗)r−(n−p−1) cos(γ)Vol(P ) (13)

where r = s(X, yobs)/s(X, z∗), and cos(γ) and Vol(P ) are as in equations (11) and

(12) respectively.

In practice, computing A is computationally intensive as it involves orthogonaliza-

tion of n vectors in n-dimensional space. To find a matrix A, supplement B with a set

of n linearly independent columns on the right, and apply Gram-Schmidt orthonor-

malization to the matrix. This algorithm is slow when n is large, as it is O(n3) and

A must be found at each iterate of the algorithm when a complete data set is drawn.

Fortunately, we can make use of results related to principal angles found in Miao and

Ben-Israel (1992) to compute the volume in (12) using B and an orthonormal basis

for C(X) (The definition of principal angles can be found in the cited text). Recall, B

is constructed by orthogonalization of a basis for T ⊥
y (A). Since this space is of dimen-

sion p + 1, applying Gram-Schmidt to find the orthonormal basis is much faster, the
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algorithm is O(np
2), and there is a considerable reduction in computational burden

when n � p. Further, the singular values of P are also the singular values of W
�
A,

which can be easily obtained through B. The following corollary formally states how

computation of A can be circumvented.

Corollary 3.7. Let U be a matrix whose columns form an orthonormal basis for

C(X). Then the non-unit singular values of U
�
B are the same as the non-unit sin-

gular values of W
�
A.

4 Applications

We illustrate the methods developed in Sections 2 and 3 with a pair of regression

models for data from Nationwide Insurance Company, which concern prediction of

the performance of insurance agencies. The data contain outliers and are subject to

model misspecification. In particular, a group of the data do not follow the same

generative process as the data of interest, and it would be extremely challenging to

model some features of the data. We wish to provide inference for the ‘good’ portion

of the data. The two models we fit either treat the analysis as a single regression or

as a collection of related regressions. Details of the models, prior distributions, and

conditioning statistics are given in the next two subsections.

4.1 Nationwide Data

The Nationwide Insurance Company sells many of its insurance policies through agen-

cies which provide direct service to policy holders. The contractual agreements be-

tween Nationwide and these agencies vary. Of major interest to Nationwide is the

prediction of future performance of agencies where, for our purposes, performance is

measured by the total number of households an agency services (‘household count’).

20



A serviced household is one in which at least one person living at that residence has

at least one policy written through the agency. We used data from previous years to

build a model to forecast future household count. In particular, we use agency char-

acteristics, as measured during a single month in 2010, to predict household counts

in the corresponding month in 2012. The characteristics used are household count

and two measurements of agency size/experience. The two measurements of agency

size/experience are, roughly, the number of employed persons at the agency and the

length of time the agency has been affiliated with Nationwide. The household counts

(response and predictor) have been square rooted to stabilize variance. The data

are proprietary, and to mask them all variables have been individually centered and

scaled and identifiers (agency/agent names and state labels) have been removed. All

subsequent analysis is done on this scale. As an exploratory view, a plot of the square

root of count in 2012, against that in 2010 is shown in Figure 3. The different colors

represent the varying contractual agreements as they stood in 2010. ‘Type 1’ agencies

are of special interest. Among the open agencies, a strong linear correlation exists.

The specific linear relationship depends on agency type. The data are characterized

by a large number of agencies which were open in 2010 but closed sometime before

2012, as represented by the horizontal band at 0. We use these data as a test bed

for our techniques, fitting models that do not account for agency closures or contract

type. Our expectation is that the restricted likelihood will facilitate prediction for

the good part of the data.
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Figure 3: The square root of count in 2012 versus that in 2010 (after centering and
scaling). The colors represent the varying contractual agreements as they stood in
2010. Agencies that closed during the 2010-2012 period are represented by the zero
counts for 2012.

4.2 Regression model

The first analysis that we consider is based on a single regression. We use the following

standard normal theory regression model

β ∼ Np(µ0, Σ0); σ
2
∼ IG(a0, b0); yi = x�

i β + �i, �i
iid
∼ N(0, σ2), i = 1, . . . , n, (14)

where β is a four dimensional vector (p = 4) of regression coefficients for the intercept,

square root of count in 2010, and the two size/experience measures, and yi is the

square rooted household count in 2012 for the i
th agency with covariate vector xi.

Although the mean of covariates and response have been removed, we include the

intercept as fitting is done on a holdout set to evaluate predictive performance. The

hyper-parameters a0, b0, µ0 and Σ0 are all fixed and set from a robust regression fit

to the data from the time period two years before. µ0 is set to the estimate of the

regression coefficients. Σ0 is set to n ·var(b) where n is taken as the sample size of the
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prior data set, corresponding to a unit information prior for β. The hyperparameters

for σ
2 are set so that the prior mean is s

2, the estimated variance from the robust

regression, and the spread of the prior covers the range of plausible values with high

probability. All values are then transformed appropriatly to match the current scale

of the data. In the end we take µ0 = (0.18, 0.81, 0.01,−0.02)� and set the mean of

σ
2 to 0.014 and standard deviation to 0.033.

We compare four Bayesian models: the standard Bayesian normal theory model,

two restricted likelihood models, both with simultaneous M-estimators as the restric-

tion, and a heavy tailed model. The heavy-tailed model replaces the normal sampling

density in (14) with a t-distribution with ν = 3 degrees of freedom. The restricted

likelihood methods use standard ρ functions, colloquially known as Huber’s ρ and

Tukey’s ρ. We have used the default tunning parameter settings for the rlm function

in the R package MASS (Venables and Ripley, 2002). Both use Huber’s scale esti-

mator as in the rlm implementation. We also fit the corresponding classical robust

regressions and a least squares regression.

4.2.1 Method of model comparison

We wish to examine the performance of the models in a fashion that preserves the

essential features of the problem. Since we are concerned with outliers and model

misspecification, we understand that our models are imperfect and so prefer to use

an out-of-sample measure of fit. This leads us to cross-validation. We repeatedly

split the data into training and validation sets. We fit the model to the training data

and assess its performance on the validation data.

The presence of numerous outliers in the data implies that both training and

validation data will contain outliers. For this reason, the evaluation must be robust to

a certain fraction of bad data. The two main strategies are to robustify the evaluation
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function (e.g., Ronchetti et al., 1997) or to retain the desired evaluation function and

trim cases (Jung et al., 2014). Here, we pursue the trimming approach with log

predictive density for the Bayesian models and log plug-in maximum likelihood for

the classical fits.

The trimmed evaluation proceeds as follows in our context. The evaluation func-

tion for case i in the hold-out data is the log predictive density, say log(f(yi)),

with the conditioning on the training data suppressed. The trimming fraction is

set at 0 ≤ α < 1. To score a method, we first identify a base method. Under

the base method, log(f(yi)) is computed for each case in the validation sample, say

i = 1, . . . ,M . The [αM ] observations with the smallest values of log(f(yi)) are

removed from the validation sample. All of the methods are then scored on the re-

maining M − [αM ] observations in the validation sample with the mean trimmed log

marginal pseudo likelihood, TLM = (M − [αM ])−1
�

log(f(yi)). The sum runs over

the remaining observations. This process is advantageous to the base method. A

method that performs poorly when it is the base method is discredited. For a com-

plete evaluation, we allow each method to appear as the base method. For brevity,

we present only a selection of results in our subsequent analyses.

4.2.2 Comparison of predictive performance

Model performance is assessed using the mean and standard deviation of the TLM

across 100 different replicates. First, we include all observations in each validation

sample to calculate TLM for each split. We then repeat the evaluation using only

certain subsets of the validation sample that are of special interest. Subsets include

open agencies, open ‘Type 1’ agencies, and ‘Type 1’ agencies. For brevity, we include

results for the ‘Type 1’ agencies only. As noted, assessing model predictions on this

set of agencies is of special interest to the company. A range of training sample
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Figure 4: Model evaluation for ‘Type 1’ agencies for training sample sizes of n =
25, 100, and 1000. The t-model is used as the base method to compute TLM. Plotted
are the mean TLM for each model against the trimming fraction across the 100 cross-
validation samples. Error bars correspond to one standard deviation of TLM above
and below the mean. Models are labeled with the following abbreviations: ‘rlm’
corresponds to a classical robust fit, ‘rest.’ corresponds to our restricted method,
and ‘t’ corresponds to the heavy-tailed t-distribution model. The letters ‘T’ and ‘H’
appearing after ‘rlm’ and ‘rest.’ correspond to the use of Tukey’s and Huber’s ρ

respectively.

sizes were used and we include results from n = 25, 100, 1000, and 2000 out of a

total of 3180 agencies. The trimming fraction, α, ranges from 0 to 0.3. A classical

robust regression to the prior data assigns zero weight to around 16% of observations;

in essence removing these from the analysis. This informed the range of trimming

fractions chosen.

Model evaluation for ‘Type 1’ agencies is shown in Figure 4 for training sample

sizes n = 25, 100, and 1000. The normal theory models perform poorly due to the

numerous outliers and are left out. Appearing in the figures are the mean TLM

across each validation set for each model and each trimming fraction, α (along the

x-axis). The error bars depicted are one standard deviation of the TLM above and

below the mean. The models pictured are: classical robust regression with Tukey’s ρ

(rlm-T), restricted likelihood based on the ‘Tukey estimate’ (rest.-T), classical robust

regression with Huber’s ρ function (rlm-H), restricted likelihood based on the ‘Huber
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estimate’ (rest.-H), and the thick tailed t-model (t). The range of the vertical axis

is chosen to enhance important features and as a result, some evaluation measures

extend below this range. In particular, the restricted methods perform poorly if no

trimming is done; reflecting that these methods are not intended to fit well to outliers.

Recall that we expect about 15-16% outliers in the validation sets, thus trimming

fractions slightly larger than this amount are needed in order to assess fits to the

‘good’ data. For n = 25, the thick tailed model prevails across trimming fractions,

although less so for α ≥ 0.15. For sample sizes as low as n = 100, the restricted

methods outperform the thick tailed model with the Tukey version performing the

best. The stronger performance of restricted likelihood based on Tukey’s method and

the t model is to be expected, as many of the residuals are so extreme that trimming

is better than winsorizing (as Huber’s method effectively does). As expected, with

enough data, the Bayesian methods and their classical counterparts perform similarly,

although there is a persistent slight edge in favor of the restricted likelihood methods.

We attribute this advantage to the weakly informative prior distribution which pulls

the estimates slightly toward better values. The similarity occurs as early as n = 100.

4.3 Hierarchical regression model

Nationwide agencies span many states and insurance regulations and the competitive

environment varies between states. A natural extension to the previous analysis is a

hierarchical regression model, grouping agencies within each state to reflect similar

business environments. Using the same study design with the same training and

validation splits, we re-analyze the data using the following hierarchical regression
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model:

β ∼ Np(µ0, aΣ0); βj
iid
∼ Np(β, bΣ0); σ

2
j ∼ IG(a0, b0);

yij = x�
ijβj + �ij, �ij

iid
∼ N(0, σ2

j ), i = 1, . . . , nj, j = 1, . . . , J

where yij represents the i
th observation in the j

th state, nj is the total number of

agencies in each state, and J is the number of states. xij is a four dimensional vector

comprised of the same covariates as above. βj represents the individual regression

coefficient vector for state j. We match this model to the non-hierarchical model in

several ways. First, µ0, Σ0, a0, and b0 are fixed as before. We constrain a+b = 1 in an

attempt to partition the total variance between the individual βj’s and the overall β.

We take b ∼ beta(v1, v2). Using the previous data set, we assess the variation between

individual estimates of the βj to set v1 and v2 to allow for a reasonable amount of

shrinkage. To allow for data dependence across the σ
2
j we first take (z1, . . . , zJ) ∼

NJ(0, Σρ) with Σρ = (1 − ρ)I + ρJ . Then we set σ
2
j = H

−1(Φ(zj)) where H is the

cdf of an IG(a0, b0) resulting in the specified marginal distribution, while introducing

correlation via ρ. We assume ρ ∼ beta(aρ, bρ) with mean µρ and precision ψρ = aρ+bρ.

The parameters µρ and ψρ are given beta and gamma distributions respectively, both

with fixed hyperparameters. To choose these fixed values we again consider fits to

individual states from the previous dataset. Plugging the estimates of zj into the

multivariate normal, the mean of µρ is set to the MLE of ρ and the variance is set to

the observed inverse Fisher information matrix, inflated by a factor of 2 to weaken

the prior for this parameter. We use the same MLE and inflated information matrix

to set the mean for ψρ. Its variance is chosen to cover a range of plausible values. A

range of other values for the fixed hyper-parameters was also studied. The differences

in results were negligible.
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Using the same techniques as in the previous section, we fit the normal theory

hierarchical model above, a thick tailed t version with ν = 3 d.f., and two restricted

likelihood versions (Huber’s and Tukey’s) of the model. For the restricted likelihood

methods, we condition on robust regression estimates fit separately within each state.

Both use Huber’s scale estimator. We also fit classical robust regression counterparts

and a least squares regression separately within each state.

We digress briefly to note that no additional computational strategies outside of

those discussed in Section 3.2 are needed to fit the restricted hierarchical models de-

scribed here. Since we condition on statistics which are computed within each state,

the model’s conditional independence between the states allows the data augmenta-

tion described earlier to be performed independently within each state. Updates of

hyperparameters follow conventional MCMC procedures. We note that different types

of statistics could be chosen for each state, if desired, allowing for a large amount of

flexibility.

Selected results for the hierarchical fits appear in Figure 5. Hierarchical models

naturally require more data and so we consider only training sizes of n = 1000 and

2000. Trimming fractions between 0.15 and 0.3 are displayed as patterns for smaller

trimming fractions are similar to those from the non-hierarchical fits. That is, without

sufficient trimming, the restricted likelihood fits’ evaluation measure is poor. Again,

the normal theory fits, both Bayesian and classical, perform poorly and are left out

of the figures. We see that Tukey’s version of restricted fits performs best in each

case (assuming sufficient trimming). Huber’s version also tops the thick tailed model

for n = 2000. The Bayesian restricted fits considerably outperform their respective

individual classical robust fits for training size of n = 1000. This observation remains,

though marginally so, for n = 2000. The advantage of the hierarchical models seen

here is due to the pooling of information across states, resulting in better predictive
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Figure 5: Model evaluation for ‘Type 1’ agencies under the hierarchical model for
n = 1000 and 2000. The t-model is used as the base method to compute TLM.
Plotted are the mean TLM for each model against the trimming fraction across the
100 cross-validation samples. Error bars correspond to one standard deviation of
TLM above and below the mean. Models are labeled using the same notation as the
previous figure. Only the relevant trimming fractions (α ≥ .15) are pictured.

performance as compared to both the thick tailed competitor as well the respective

classical fits.

4.4 Comparison of hierarchical and non-hierarchical fits

The performance of the methods for the hierarchical and non-hierarchical models

can be contrasted through our cross validations studies. We focus on Tukey’s and

Huber’s conditioning statistic and concentrate our evaluation on the ‘Type 1’ agencies.

Table 1 displays the mean TLM for each model and range of trimming fractions. Our

summary below focuses exclusively on realistic trimming fractions, α ≥ 0.15, and

Tukey’s conditioning statistic.

We first note that for the non-hierarchical model, there is little difference between

mean TLM for n = 1000 and n = 2000, with the numbers differing only in the

third decimal place. This is due to the posterior predictive distributions having
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stabilized. The mean TLMs for the hierarchical model show a greater change with

increases of about 0.05 to 0.07 as the training sample size changes from 1000 to

2000. For calibration, the mean TLM for a normal with mean 0.5 and variance

1 is approximately this size when trimming is done under a standard normal base

model. Thus, the increase in mean TLM is substantial. We attribute the change for

the hierarchical model to the improvement in fits, particularly for states with fewer

agencies.

Direct comparison of the hierarchical and non-hierarchical models shows that, for

n = 1000, the non-hierarchical model has uniformly (for α of interest) better mean

TLM. The differences are substantial, and the summaries primarily reflect greater

stability of fits on a state-by-state basis under the non-hierarchical model. To a lesser

extent, they reflect variation in the evaluation criterion which stems from modest

validation sample size, particularly with larger trimming fractions. The trimmed cases

are not proportionally distributed across states. The pattern changes for n = 2000,

with the hierarchical model showing larger mean TLMs for trimming fractions 0.15

and 0.20. The improvement reflects the ability of the hierarchical model to capture

differences in regressions across the states which is realized when the training sample

size is large enough. We attribute the better performance of the non-hierarchical

model for the largest trimming fractions to variation in the evaluation.

5 Discussion

In this work, we have presented an approach which begins to reconcile Bayesian meth-

ods with the practice of data analysis. Many routine choices in an analysis react to

the gap between reality and the statistical model, where a bit of set-up work im-

proves inferential performance. Often, these choices can be recast in the framework
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Trimming fraction (α)
0.15 0.2 0.25 0.3

Tukey (n = 1000)
Non-Hier. 1.072 (0.014) 1.179 (0.022) 1.226 (0.029) 1.255 (0.033)
Hier. 1.021 (0.063) 1.110 (0.070) 1.157 (0.067) 1.187 (0.065)

Tukey (n = 2000)
Non-Hier. 1.068 (0.029) 1.178 (0.007) 1.225 (0.011) 1.254 (0.014)
Hier. 1.094 (0.041) 1.189 (0.036) 1.221 (0.033) 1.242 (0.028)

Huber (n = 1000)
Non-Hier. 1.020 (0.020) 1.114 (0.035) 1.157 (0.041) 1.184 (0.045)
Hier. 0.861 (0.073) 0.937 (0.079) 1.001 (0.074) 1.063 (0.064)

Huber (n = 2000)
Non-Hier. 1.015 (0.021) 1.112 (0.014) 1.154 (0.019) 1.181 (0.023)
Hier. 0.930 (0.041) 1.014 (0.043) 1.080 (0.035) 1.148 (0.027)

Table 1: Mean (standard deviation) of TLM for ‘Type 1’ agencies for the restricted
non-hierarchical and hierarchical models for n = 1000 and 2000.

of restricted likelihood, lending them more formality and facilitating development of

theoretical results. But a much greater benefit of our framework is that it leads us to

blend classical estimation with Bayesian methods. Here, we use the likelihood from

robust regression estimators to move from prior distribution to posterior distribution.

Conditioning on the estimator, the update follows Bayes’ Theorem exactly. Compu-

tation is driven by MCMC methods, requiring only a modest supplement to existing

algorithms. In another context, we might condition on the results of a set of estimat-

ing equations, designed to enforce lexical preferences for those features of the analysis

considered most important, yet still producing inferences for secondary aspects of the

problem. In other settings, we envision conditioning on a mix of estimators and some

of the observed data.

The framework we propose allows us to retain many benefits of Bayesian methods:

it requires a full and complete model for the data; it lets us combine various sources

of information both through the use of a prior distribution and through creation of a

hierarchical model; it guarantees admissibility of our decision rules among the class
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based on the summary statistic T (y); and it naturally leads us to focus on predictive

inference.

This same framework retains many of the benefits of classical estimation. Great

ingenuity has been used to create a wide variety of estimators in this tradition, many

of which are designed to handle specific flaws in the model. The estimators are

typically accompanied by asymptotic results on consistency and distribution. Many

of these results carry over to our blend of classical and Bayesian methods, although

regularity conditions differ. We expect our procedures to have strong large sample

performance, especially in settings where pooling of information is of value.

This framework opens a number of questions, including a need to revisit such

issues as model selection, model averaging for predictive performance, and the role of

diagnostics. Perhaps the biggest question is which summary statistic to choose. For

this, we recommend a choice based on the analyst’s understanding of the problem,

model, reality, deficiencies in the model, inferences to be made, and the relative

importance of various inferences.

6 Appendix

Proof of Theorem 3.1.

Proof.

s(X, y) =
s(X, yobs)

s(X, y∗)
s(X, y∗) = s(X,yobs), and (15)

b(X, y) = b

�
X,

s(X, yobs)

s(X, y∗)
y∗ + X

�
b(X,yobs)− b(X,

s(X, yobs)

s(X, y∗)
y∗)

��
(16)

= b(X,
s(X, yobs)

s(X, y∗)
y∗) + b(X, yobs)− b(X,

s(X, yobs)

s(X, y∗)
y∗) (17)

= b(X, yobs) (18)
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Proof of Lemma 3.2.

Proof. We first show that ∇s(X, y) ∈ C⊥(X). Recall that H = I − Q. By the

regression invariance property C7 of s, we have

s(X, y) = s(X, Qy + Hy) = s(X, Qy). (19)

Thus, by the chain rule∇s(X, y) = Q∇s(X,Qy) = Q∇s(X, z). Hence X
�∇s(X, y) =

0 as desired. From equation (19), all vectors z� ∈ Π(A) satisfy s(X, z�) = s(X, y) =

s(X, yobs), and so all directional derivatives of s along each tangent v to Π(A) in

C⊥(X) at z are equal to 0 (i.e., ∇s(X, z) · v = 0). Thus ∇s(X, z) is orthogonal to

Π(A) at z. Since Π(A) has dimension n − p − 1, ∇s(X, z) gives the unique (up to

scaling and reversing direction) normal in the n− p dimensional C⊥(X).

Proof of Lemma 3.3

Proof. Without loss of generality, assume the columns of X form an orthonormal

basis for C(X) and likewise the columns of W form and orthonormal basis for C⊥(X).

With earlier notation, H = XX
� and Q = WW

�. The set A is defined by the p + 1

equations s(X, y) = s(X, yobs), b1(X, y) = b1(X, yobs), . . . , bp(X, y) = bp(X, yobs).

Consequently, the gradients are orthogonal to A. Let ∇b(X, y) denote the n × p

matrix with columns ∇b1(X, y), . . . ,∇bp(X, y). We seek to show the n × (p + 1)

matrix [∇b(X, y),∇s(X, y)] has rank p + 1. Using property C5, we have that

b(X, y) = b(X, Qy + Hy) = b(X,Qy) + X
�y
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Then ∇b(X, y) = Q∇b(X, Qy) + X and

[XX
�
, WW

�]�[∇b(X, y),∇s(X, y)] =




X 0

WW
�∇b(X,y) ∇s(X, y)



 (20)

The last column comes from Lemma 3.2. The matrix [XX
�
, WW

�]� is of full column

rank (rank n), and so the rank of [∇b(X, y),∇s(X, y)] is the same as the rank of

the matrix on the right hand side of (20). This last matrix has rank p + 1 since

∇s(X, y) �= 0 by C8, and so does [∇b(X, y),∇s(X, y)].

Proof of Lemma 3.4

Proof. P is the projection of the columns of A onto C⊥(X). For this to result in a

loss of rank, a subspace of Ty(A) must belong to C(X). Following property C5, for

an arbitrary vector Xv ∈ C(X), b(X, y + Xv) = b(X, y) + v. From the property, we

can show that the directional derivative of b along Xv with v �= 0 is v, which is a

nonzero vector. Hence Xv /∈ Ty(A).

Proof of Corollary 3.7

Proof. The corollary relies on a lemma and theorem from Miao and Ben-Israel (1992)

which we restate slightly for brevity of presentation. The principal angles between

subspaces pluck off a set of angles between subspaces, from smallest to largest. The

number of such angles is the minimum of the dimensions of the two subspaces. Miao

and Ben-Israel’s first result (their Lemma 1) connects these principal angles to a set

of singular values, and hence to volumes.

Lemma 6.1. (Miao, Ben-Israel) Let the columns of QL ∈ Rn×l and QM ∈ Rn×m

form orthonormal bases for linear subspaces L and M respectively, with l ≤ m. Let
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σ1 ≥ · · · ≥ σl ≥ 0 be the singular values of Q
�
MQL. Then cos θi = σi, i = 1, . . . , l

where 0 ≤ θ1 ≤ θ2 ≤ · · · ≤ θl ≤
π
2 are the principal angles between L and M .

Miao and Ben-Israel’s second result (their Theorem 3) makes a match between the

principal angles between a pair of subspaces and the principal angles between their

orthogonal complements.

Theorem 6.2. (Miao, Ben-Israel) The nonzero principal angles between subspace L

and M are equal to the nonzero principal angles between L
⊥ and M

⊥.

To establish the corollary, we appeal to Lemma 6.1 and Theorem 6.2. Translating

Miao and Ben Israel’s notation, we have M = C⊥(X), QM = W , L = Ty(A), and

QL = A. By Theorem 6.2, the nonzero principal angles between Ty(A) and C⊥(X)

are the same as the nonzero principal angles between T ⊥
y (A) and C(X). By 6.1,

the non-unit singular values of W
�
A are the same as the non-unit singular values of

U
�
B.
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