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2 I Introduction

. Many intelligence and surveillance applications require high degree
of human interaction to interpret events
« Remains Difficult
» increasing volume of data
« points in time where data is missing
. Can we model a self-exciting process where the history has missing
data?
. We develop missing data estimation for the Hawkes process using
Bayesian methods
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; I Twitter Examples

Left: Tweets during 2014 World Cup. Right: Tweets before, during, after Paris
attacks on 11/13/2015.
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‘ I Global Terrorism Database Example

. Global Terrorism Database (2017) Open-source database including

information on terrorism events around the world from 1970-2015
Jittered Events by Year

year
* 1990
° 1991
° 1992
° 1994
° 1995
© 1996
© 1997

X

Terrorism Events in Colombia 1990-1997. Notice anything strange about
this data?
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s I Global Terrorism Database Example

« Including Marks - Auxiliary information about an event

Event Types by Year
1990 1991 1992 1904
1995 1996 1997
Attack Type * Armed Assault * Bombing/Explosion * Hijacking + Unknoy

* Assassination * Facility/Infrastructure Attack * Hostage Taking

Types of Terrorism Events in Colombia 1990-1997.
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I Self-Exciting Marked Point (Hawkes) Process m

. Atemporal point process N(t) is characterized by its conditional
intensity A(t) (Daley and Vere-Jones 2003),

con o EIN(Lt+ AL
A1) = gtTo At

- Hi= {tn /fi}t,<t
. K;jis the mark associated with
. Often takes the form

)\ +Z t—tk,lﬁk)

tp<t I

. (t) is the immigrant intensity
. a(Ky) is the total offspring intensity
. g(t, k) is the normalized offspring intensity
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I Likelihood m

« x=(t,...,t,) observed on [0, T), ¢ - parameters
« v (k|t) = y(klt, H,) - marked distribution conditioned on past
and current time.

0 = (T1¥ 07" (s10) ) ol

A*(t) = fo A*(s)ds = M(t) + Ztk<ta( $)G(t = te, Ky), M(t) =
Jo u(s) ds

|
. Bayesian inference: specify priors (proper), standard Gibbs sampling |
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. I Branching Structure

. Rasmussen (2013), Ross (2016)

1. The parents | follow a Poisson process with intensity z(t)
2. Each parent t; € | generates an independent cluster C;
3. G consists of points of generationn = 0,1,...:
« Generation 0 is just {t;, K; }
» Each pointin generation n generates points in generation n + 1
« {t;, K} in generation n generates a marked Poisson process O with
intensity a(k;)g(t — t;, K;)
4. The process is the union of all the clusters.

March 6, 2018 I



g I Branching Structure

. LetY = {y,} be the branching structure
. y; = jiftiisachild of t;and y; = 0 if t; is an immigrant
« S = {t;;y; = j} - set of children of t;

Vs =4

t t; t3 ty ts tg ty

Depiction of the branching structure.
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0 I Branching Structure Likelihood m

« Speeds up likelihood computation

. Separates dataset into independent Poisson processes
. Marked Immigrants with intensity z(t)
. Marked Children of t; with intensities a(k;)g(t — tj, K;)

p(x|o,Y) = p(I|®, v Hp (0], )

p(I[@,¥) = exp(=M(T)) IT,e; pe(t)y (silti)
p(Ojl, Y) = exp(—a(k))G(T — 4, &;)) TToeo, ()9 (ti — 4, i) Vo (Kilt) |
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§ I Gibbs Step for Y

. Uniform prioron Y

. Make use of stochastic declustering (Zhuang, Ogata, and Vere-jones

2002, Ross (2016))

K

p(Y; = jlx, @) = { S

A(t)
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2 I Bayesian Missing Data Augmentation

. Observe points ty,s on [0, T;] U [T,, T)

Want 7 (¢|tops)

« Augment t,ps With missing data tp;ss

. Gibbs Sampling

1. p(@|tobs, tmiss) - the full posterior

2. p(tmiss‘ﬁby tobs) - use MH

. Tanner and Wong (1987)
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13 I MH Step: P(tmiss|¢7 tObS)
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xr-datauptotimeT
Proposal: p(tmiss|¢7xﬁ> o8 p(XTz|¢)
Sample tyss USing thinning method developed by (Ogata 1981)

Target p(tmiss|¢a tobs) X p(tmi557 tobs|¢)

MH ratio can be computed.
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g I Simulation

. Temporal Model with independent categorical marks.

At) =p+a Z g(t — t)7y" (kilty) (1

kit <t

. ki €41,2,...,K} is the categorical mark for event i.

o My =2 I(Kki = R)

m, ..., mg ~ mulitnomial(n, ps, . .., px)

« D1y, px ~ Dirichlet(n, ..., 1)
. g(t) = Bexp(—pt)
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15 I Simulated Data

« it =.5a=0.9 and § =10, time interval (0,100)

08
0.4

L] [ 1] 000 GIENe [ ]
0.0

L ] oee® ¢ 00O © o0 000 amme [ J
0.4
-0.8

0 25 50 75 100

Time

. Arrival times for full data (blue) and arrival times with missing data
(orange)
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1 I Parameter Estimates

ap i
0.4
6
03
2 4
%)
c 02
D
ae)
2
0.1
0.0 0
6 8 10 12 0.25 0.50 075 1.00
value

Data/Model D Complete/Complete E] Missing/Complete D Missing/Missing

. Missing data model: Covers true parameters, wider posteriors.
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v I Stochastic Code Verification

Check
C++ _
R Translate Speed on Git/merge
larger requests
datasets

Add features: marks, spatial

Figure: MCMC Code Development Process.

-How do we ensure we are fitting the correct model?
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16 I Stochastic Code Verification

. How do we ensure we are fitting the correct model?
« Single simulated dataset with fixed parameters - do you recover the
parameters?
« Multiple simulated datasets - frequentist coverage rates?
. Using theory: Cook, Gelman, and Rubin (2006)
° ¢true ~ 7T(¢)
« x~p(x[¢)
« If the code is correct, then the posterior quantiles of ¢yye are
uniform.
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E I Frequentist Coverage

coverage
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o u~T(510),a ~T(4.8,12),3 ~T1(20,10),n, =1, K= 4
. Time interval: (0]100), 500 simulated datasets.

1.00

0.75

0.50

0.25

10

20 30
% of Interval Missing

40

50

parameter
@ alpha*beta
A mu

B # missing events

model
-0~ Full
-®- MD




2 I Frequentist Coverage

coverage
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7 I Distribution of Quantiles of True Parameters
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Qtrue = ffgif 7T(¢|X)d¢

Estimated with MCMC samples using empirical quantiles
Many parameters - test each Gie?

Recommendation

1.
2.

Group similar parameters together

For each group - form a new parameter equal to the mean of the
group

For each group compute p-value p of chi-square test:

X = Z{V q)_w(qirue) ~ XIZ\I

Perform Bonferroni correction on p-values - multiply by number of
groups.

Plot z-transformed p-values |®~'(p)| to identify extremes.




» I No Missing Data

parameter

P+ n * X @ alpha_beta
A nu
A W p_mean

+ p.1
X p2
alpha_beta o % p3

parameter_group
3
c

0.0 0.5 1.0 1.5
abs_z_stat
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» I 50% of Interval Missing

« Z- number of missing observations

z (
=%
3
& T +
9]
=
£
§ mu A
©
<%
alpha_beta

0.5 1.0 1.5
abs_z_stat
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% I Spatial-Temporal Model

« Kk = (K, Ky,) - spatial locations viewed as marks
. Similar to ETAS model of Ogata and Zhuang (2006)

At) =p+ Z ag(t — to)y(Kelte, {tpaa Hpa})

Ritp<t

V(Eltes {tp, Kpa}) = 27;;2 EXp {_HHZ_T’;DHW}'

. Spatial location of offspring centered at parent location with
Gaussian decay.

. Parents - homogeneous Poisson process.

. 0’ ~1G(a,b)
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5 I Simulated Data

Complete Data Incomplete Data
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Figure: complete data, missing data on (0,20).
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2 I Parameter Estimates

AL A

*E 0 25 0.30 0.35 0.40 0.45 0.50
S 2
o ° Data/Model
6000 D Complete/Complete
4000 E] Missing/Complete
2000 D Missing/Missing
0

0.0008 0.0010 0.0012 0.0014
value
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7 I Global Terrorism Database
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The Global Terrorism Database is an open-source database
including information on terrorism events around the world from
1970-2015

We will look at the year span between 1990-1997 in Colombia which
had multiple problems with guerrillas, paramilitaries, and narcotics
The database is missing records for the entire year of 1993

Records were ‘partially’ recovered (21 events)




2 I Terrorism Events in Colombia

Event Types by Year
1990 1991 1992 1994
§ .*
1995 1996 1997
Attack Type * Armed Assault ®* Bombing/Explosion * Hijacking ¢ Unknov

¢ Assassination ¢ Facility/Infrastructure Attack ¢ Hostage Taking

. Seven attack types: Armed Assault, Assassination,
Bombing/Explosion, etc.
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» I Cumulative Number of Events
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e I Parameter Estimates
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d I Inference on Missing Events in 1993

0.0075

ty

0.0050

dens

0.0025

0.0000 @ - o

200 300 400 500 600
Posterior of # of Events in 1993 &
# events recorded each year

« GTD's estimate of the number of missing events is 225.
. 90% credible bound is (270, 429).
. Average number of events is 374
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2 I Inference on Event Probabilities
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Figure: Posterior of probabilities of each event type. Points are raw frequencies
from the data. Density for Hijacking events left out.
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» I Spatial Model Results

Jittered Events by Year

year

X

Figure: Terrorism Events in Colombia 1990-1997.
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* I Locations of Missing Data?

Events by Year

observed
- observed
- recovered

X

Figure: A sample of missing events.
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& I Need Inhomogeneous Mean

observed
- observed
- recovered

Figure: A sample of missing events.
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* I Ssummary

March 6, 2018

Developed Bayesian Model for Hawkes processes with missing time
histories

« Temporal model with categorical marks

« Treated Spatial locations as a mark
Implemented formal stochastic code verification strategies
Demonstrations on GTD:

» Estimate of the number of missing events larger than GTD

« GTD presumably used auxiliary information that we did not
Future Work:

« Continued development of inhomogeneous mean models




¥ I Questions?

Simulated — with missing

interval
™
Tweets by location shown for the
Phad Tweets during the 2014 World four hours before, the four hours
§ Cup during, and the four hours after
o the Paris attacks on 11/13/2015.
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