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2 Introduction
• Many intelligence and surveillance applications require high degree
of human interaction to interpret events

• Remains Difficult
• increasing volume of data
• points in time where data is missing

• Can we model a self-exciting process where the history has missing
data?

• We develop missing data estimation for the Hawkes process using
Bayesian methods
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3 Twitter Examples

Left: Tweets during 2014 World Cup. Right: Tweets before, during, after Paris
attacks on 11/13/2015.
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4 Global Terrorism Database Example

• Global Terrorism Database (2017) Open-source database including
information on terrorism events around the world from 1970-2015

Terrorism Events in Colombia 1990-1997. Notice anything strange about
this data?
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5 Global Terrorism Database Example

• Including Marks - Auxiliary information about an event

Types of Terrorism Events in Colombia 1990-1997.
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6 Self-Exciting Marked Point (Hawkes) Process

• A temporal point process N(t) is characterized by its conditional
intensity λ(t) (Daley and Vere-Jones 2003),

λ∗(t) = lim
∆t↓0

E[N(t, t+∆t)|Ht]

∆t

• Ht = {ti, κi}ti<t

• κi is the mark associated with ti
• Often takes the form

λ∗(t) = µ(t) +
∑
tk<t

α(κk)g(t − tk, κk)

• µ(t) is the immigrant intensity
• α(κk) is the total offspring intensity
• g(t, κ) is the normalized offspring intensity
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7 Likelihood

• x = (t1, . . . , tn) observed on [0, T), ϕ - parameters
• γ∗(κ|t) = γ(κ|t, Ht) - marked distribution conditioned on past
and current time.

p(x|ϕ) =
( n∏

i=1

λ∗(ti)γ∗(κi|ti)
)
exp(−Λ∗(T)),

Λ∗(t) =
∫ t
0 λ∗(s) ds = M(t) +

∑
tk<t α(κi)G(t − tk, κk), M(t) =∫ t

0 µ(s) ds

• Bayesian inference: specify priors (proper), standard Gibbs sampling
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8 Branching Structure

• Rasmussen (2013), Ross (2016)

Branching Structure
1. The parents I follow a Poisson process with intensity µ(t)
2. Each parent ti ∈ I generates an independent cluster Ci
3. Ci consists of points of generation n = 0, 1, . . . :

• Generation 0 is just {ti, κi}
• Each point in generation n generates points in generation n+ 1
• {tj, κj} in generation n generates a marked Poisson process Oj with

intensity α(κj)g(t − tj, κj)

4. The process is the union of all the clusters.
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9 Branching Structure

• Let Y = {yi} be the branching structure
• yi = j if ti is a child of tj and yi = 0 if ti is an immigrant
• Sj = {ti; yi = j} - set of children of tj

Depiction of the branching structure.
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10 Branching Structure Likelihood

• Speeds up likelihood computation
• Separates dataset into independent Poisson processes

• Marked Immigrants with intensity µ(t)
• Marked Children of tj with intensities α(κj)g(t − tj, κj)

p(x|ϕ, Y) = p(I|ϕ, Y)
n∏

j=1

p(Oj|ϕ, Y)

p(I|ϕ, Y) = exp(−M(T))
∏

ti∈I µ(ti)γ∗
I (κi|ti)

p(Oj|ϕ, Y) = exp(−α(κj)G(T − tj, κj))
∏

ti∈Oj
α(κj)g(ti − tj, κj)γ

∗
O(κj|tj)
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11 Gibbs Step for Y

• Uniform prior on Y
• Make use of stochastic declustering (Zhuang, Ogata, and Vere-Jones
2002, Ross (2016))

p(Yi = j|x, ϕ) =


µ

λ(ti)
if j = 0

αg(tj−ti)
λ(ti)

if j ∈ 1, 2, . . . , i − 1.
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12 Bayesian Missing Data Augmentation

• Observe points tobs on [0, T1] ∪ [T2, T)

• Want π(ϕ|tobs)

• Augment tobs with missing data tmiss

• Gibbs Sampling

1. p(ϕ|tobs, tmiss) - the full posterior

2. p(tmiss|ϕ, tobs) - use MH

• Tanner and Wong (1987)
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13 MH Step: p(tmiss|ϕ, tobs)

• xT - data up to time T

• Proposal: p(tmiss|ϕ, xT1) ∝ p(xT2 |ϕ)

• Sample tmiss using thinning method developed by (Ogata 1981)

• Target: p(tmiss|ϕ, tobs) ∝ p(tmiss, tobs|ϕ)

• MH ratio can be computed.
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14 Simulation

• Temporal Model with independent categorical marks.

λ(t) = µ + α
∑
k:ti<t

g(t − ti)γ∗(κi|ti) (1)

• κi ∈ {1, 2, . . . , K} is the categorical mark for event i.

• mk =
∑

I(κi = k)

m1, . . . ,mK ∼ mulitnomial(n, p1, . . . , pK)

• p1, . . . , pK ∼ Dirichlet(η1, . . . , ηK)
• g(t) = β exp(−βt)
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15 Simulated Data

• µ = .5, α = 0.9, and β = 10, time interval (0, 100)

• Arrival times for full data (blue) and arrival times with missing data
(orange)
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16 Parameter Estimates

• Missing data model: Covers true parameters, wider posteriors.
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17 Stochastic Code Verification

Figure: MCMC Code Development Process.

-How do we ensure we are fitting the correct model?
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18 Stochastic Code Verification

• How do we ensure we are fitting the correct model?
• Single simulated dataset with fixed parameters - do you recover the

parameters?
• Multiple simulated datasets - frequentist coverage rates?

• Using theory: Cook, Gelman, and Rubin (2006)
• ϕtrue ∼ π(ϕ)
• x ∼ p(x|ϕ)
• If the code is correct, then the posterior quantiles of ϕtrue are

uniform.
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19 Frequentist Coverage

• µ ∼ Γ(5, 10), α ∼ Γ(4.8, 12), β ∼ Γ(20, 10), ηk = 1, K = 4
• Time interval: (0,100), 500 simulated datasets.
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20 Frequentist Coverage

March 6, 2018



21 Distribution of Quantiles of True Parameters

• qtrue =
∫ ϕtrue

−∞ π(ϕ|x)dϕ
• Estimated with MCMC samples using empirical quantiles
• Many parameters - test each qtrue?
• Recommendation

1. Group similar parameters together
2. For each group - form a new parameter equal to the mean of the

group
3. For each group compute p-value p of chi-square test:

X2 =
∑N

i Φ
−1(qitrue) ∼ χ2

N
4. Perform Bonferroni correction on p-values - multiply by number of

groups.
5. Plot z-transformed p-values |Φ−1(p)| to identify extremes.
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22 No Missing Data
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23 50% of Interval Missing

• z - number of missing observations
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24 Spatial-Temporal Model

• κ = (κx, κy) - spatial locations viewed as marks
• Similar to ETAS model of Ogata and Zhuang (2006)

λ(t) = µ +
∑
k:tk<t

αg(t − tk)γ(κk|tk, {tpa, κpa}) (2)

γ(κ|tk, {tpa, κpa}) = 1
2πσ2 exp

{
−||κ−κpa||2

2σ2

}
,

• Spatial location of offspring centered at parent location with
Gaussian decay.

• Parents - homogeneous Poisson process.
• σ2 ∼ IG(a, b)
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25 Simulated Data

Figure: complete data, missing data on (0,20).
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26 Parameter Estimates
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27 Global Terrorism Database

• The Global Terrorism Database is an open-source database
including information on terrorism events around the world from
1970-2015

• We will look at the year span between 1990-1997 in Colombia which
had multiple problems with guerrillas, paramilitaries, and narcotics

• The database is missing records for the entire year of 1993
• Records were ‘partially’ recovered (21 events)
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28 Terrorism Events in Colombia

• Seven attack types: Armed Assault, Assassination,
Bombing/Explosion, etc.
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29 Cumulative Number of Events
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30 Parameter Estimates
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31 Inference on Missing Events in 1993

• GTD’s estimate of the number of missing events is 225.
• 90% credible bound is (270, 429).
• Average number of events is 374
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32 Inference on Event Probabilities

Figure: Posterior of probabilities of each event type. Points are raw frequencies
from the data. Density for Hijacking events left out.
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33 Spatial Model Results

Figure: Terrorism Events in Colombia 1990-1997.
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34 Locations of Missing Data?
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Figure: A sample of missing events.
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Figure: A sample of missing events.
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36 Summary

• Developed Bayesian Model for Hawkes processes with missing time
histories

• Temporal model with categorical marks
• Treated Spatial locations as a mark

• Implemented formal stochastic code verification strategies
• Demonstrations on GTD:

• Estimate of the number of missing events larger than GTD
• GTD presumably used auxiliary information that we did not

• Future Work:
• Continued development of inhomogeneous mean models

March 6, 2018



37 Questions?
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