Bayesian Inference via the Blended Paradigm

John Lewis, Yoonkyung Lee, Steven MacEachern

The Ohio State University With Support from: The Nationwide Center for Advanced Customer Insights NSF

Tuesday, August 5, 2013

Introduction to the Blended Paradigm

- Traditional Bayesian Framework:
 - $Y \sim [Y|\theta]$ and $\theta \sim [\theta]$
 - Given the observed Y = y, pass to the posterior:

 $[\theta|y] \propto [y|\theta][\theta]$

- Deficiencies:
 - We may not fully believe the likelihood $[Y|\theta]$
 - More modeling may not fix this problem
- Acknowledge inadequacy of our model
- Drive Bayesian update with the 'good' portion of the likelihood

Introduction to the Blended Paradigm

- Blended Paradigm Framework:
 - Here, T(Y) is a 'robust' summary of the data
 - 'Robust' means insensitivity to the deficiencies in the model for inferences of interest
 - Model for $[Y|\theta]$ implies model for $[T(Y)|\theta]$
 - $T(Y) \sim [T(Y)|\theta]$ and $\theta \sim [\theta]$
 - Given the observed T(y) = t, pass to the posterior:

 $[\theta|t] \propto [t|\theta][\theta]$

- Implementation via MCMC
- Goal : To obtain better inference through a wise choice of T(Y)

Proof of Concept-Outliers

· Simon Newcomb's famous measurements of the speed of light

Model

- Model for the data: $Y_i \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2), i = 1, \cdots, 66$
 - Full Likelihood
 - Restricted Likelihood $T(Y) = (\hat{\mu}, \hat{\sigma})$
 - $(\hat{\mu}, \hat{\sigma})$ robust M-estimators using Huber's loss and 'Proposal 2'
- Fixed priors: $\mu \sim N(\eta, \tau^2)$, $\sigma^2 \sim IG(\alpha, \beta)$

•
$$\eta=-222$$
, $au=$ 540, $lpha=$ 5, $eta=$ 200

 Priors derived from experimental data on the speed of light conducted before Newcomb's study

Posteriors

Marginal Posteriors for µ Marginal Posteriors for σ^2 0.10 - Full 0.08

Posteriors

Marginal Posteriors for µ Marginal Posteriors for σ^2 0.10 Full - Full Deleted Outliers Deleted Outliers 0.8 Huber --- Huber 0.08 0.6 0.06 Density Density 4.0 0.04 02 0.02 0.0 0.0 20 25 X X-del 30 ff 35 s² - del 50 100 150 °2 μ σ^2

• Overall conclusion: Reduced bias and variance

Model Fitting

- $[T(Y)|\theta]$ typically intractable
- Small dimensions: grid estimation
- Larger dimensions: data augmented MCMC
 - $[\theta, Y|T(y)]$
 - $[\theta|Y, T(y)] = [\theta|Y]$
 - $[Y|\theta, T(y)]$
- First step: full posterior
- Second step: Metropolis-Hastings

MH Step

• MH ratio

$$\frac{[y^{**}|\theta,t]}{[y_{curr}|\theta,t]}\frac{p(y_{curr}|y^{**})}{p(y^{**}|y_{curr})}$$

- Ratio of Likelihoods: normalizing constants cancel
- Proposal density:
 - Start Y[∗] ∼ g
 - Transform $H: Y^* \to Y^{**}$, so that $T(Y^{**}) = T(y)$
 - Use this recipe to derive the proposal density (not a standard transformation)

n = 3: sample space lies on the plane defined by $\bar{y} = 0$

- Proposal density
 - Starting distribution g: uniform on the circle
 - Adjustment 1: Stretch out to the target shape

• r⁻¹

• Adjustment 2: Attenuation to get density along the target shape

• $cos(\gamma)$

•
$$p(y^{**}) \propto \frac{\cos(\gamma)}{r}$$

• MCMC for $[Y_1|\theta, T(y), Y_1 > 0], \theta = (\mu, \sigma) = (0, 1)$

• MCMC for $[Y_1|\theta, T(y), Y_1 > 0], \mu = (.4, -.5, .1), \sigma = 0.1$

• MCMC for $[Y_1|\theta, T(y), Y_1 > 0], \mu = (.4, -.5, .1), \sigma = 0.3$

n = 3: sample space does not lie in a plane

n = 3: sample space does not lie in a plane

- Earlier adjustments result in distribution in the plane
- Need the distribution in the original space
- One final adjustment
 - Comparison of the infinitesimal arc lengths in projected space to full space

• MCMC for $[Y_1|\theta, T(y), Y_2 = 0], \theta = (\mu, \sigma) = (0, 1)$

• Without the second adjustment

• MCMC for $[Y_2|\theta, T(y), Y_1 = 0]$, $\mu = (-.5, .4, .1)$, $\sigma = .5$

Summary of the MH Step

- The recipe for the proposal
 - Start Y* uniform on unit sphere
 - Transform $H: Y^* \to Y^{**}$ so that $T(Y^{**}) = T(y)$
- *H* involves
 - Stretch in deviation space: r^{-1}
 - Attenuation in the deviation space
 - Attenuation for the original space

Summary of the MH Step

- T(Y) = (L(Y), S(Y))
- Both attenuations involve abla L and abla S
- Extension to *n* dimensions
 - Stretch in deviation space: $r^{-(n-2)}$
 - Attenuation in deviation space: compare norms of the n-1 dimensional tangent spaces for the sphere and the target manifold
 - Attenuation in original space: comparing n 2 dimensional volumes in the original space to the deviation space
 - Calculations need ∇L and ∇S

Conclusion

- The illustration today concerned the location and scale problem
 - Concern is outliers
- Modeling and computation extends to more interesting structures
 - Inclusion of covariates
 - Hierarchical models
- Benefits include
 - Reduced bias and smaller posterior variance
 - Ability to pool information
 - Ability to incorporate external information
- Blended paradigm also addresses model misspecification