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Introduction to the Blended Paradigm

• Traditional Bayesian Framework:

• Y ∼ [Y |θ] and θ ∼ [θ]

• Given the observed Y = y , pass to the posterior:

[θ|y ] ∝ [y |θ][θ]

• Deficiencies:

• We may not fully believe the likelihood [Y |θ]

• More modeling may not fix this problem

• Acknowledge inadequacy of our model

• Drive Bayesian update with the ‘good’ portion of the
likelihood



Introduction to the Blended Paradigm

• Blended Paradigm Framework:

• Here, T (Y ) is a ‘robust’ summary of the data

• ‘Robust’ means insensitivity to the deficiencies in the model
for inferences of interest

• Model for [Y |θ] implies model for [T (Y )|θ]

• T (Y ) ∼ [T (Y )|θ] and θ ∼ [θ]

• Given the observed T (y) = t, pass to the posterior:

[θ|t] ∝ [t|θ][θ]

• Implementation via MCMC

• Goal : To obtain better inference through a wise choice of
T (Y )



Proof of Concept-Outliers
• Simon Newcomb’s famous measurements of the speed of light
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Model

• Model for the data: Yi
iid∼ N(µ, σ2), i = 1, · · · , 66

• Full Likelihood

• Restricted Likelihood T (Y ) = (µ̂, σ̂)

• (µ̂, σ̂) robust M-estimators using Huber’s loss and ‘Proposal 2’

• Fixed priors: µ ∼ N(η, τ2), σ2 ∼ IG (α, β)

• η = −222, τ = 540, α = 5, β = 200

• Priors derived from experimental data on the speed of light
conducted before Newcomb’s study



Posteriors
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• Overall conclusion: Reduced bias and variance



Posteriors
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• Overall conclusion: Reduced bias and variance



Model Fitting

• [T (Y )|θ]- typically intractable

• Small dimensions: grid estimation

• Larger dimensions: data augmented MCMC

• [θ,Y |T (y)]

• [θ|Y ,T (y)] = [θ|Y ]

• [Y |θ,T (y)]

• First step: full posterior

• Second step: Metropolis-Hastings



MH Step

• MH ratio
[y∗∗|θ, t]

[ycurr |θ, t]

p(ycurr |y∗∗)

p(y∗∗|ycurr )

• Ratio of Likelihoods: normalizing constants cancel

• Proposal density:

• Start Y ∗ ∼ g

• Transform H : Y ∗ → Y ∗∗, so that T (Y ∗∗) = T (y)

• Use this recipe to derive the proposal density (not a standard
transformation)



Example 1- T (y) : ȳ = 0,
∑
|yi − ȳ | = 1

n = 3: sample space lies on the plane defined by ȳ = 0
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Example 1- T (y) : ȳ = 0,
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Example 1- T (y) : ȳ = 0,
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Example 1- T (y) : ȳ = 0,
∑
|yi − ȳ | = 1

Two dimensional view of the plane

●
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tangent to shape
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attenuation: cos(γ)



Example 1- T (y) : ȳ = 0,
∑
|yi − ȳ | = 1

• Proposal density

• Starting distribution g: uniform on the circle

• Adjustment 1: Stretch out to the target shape

• r−1

• Adjustment 2: Attenuation to get density along the target
shape

• cos(γ)

• p(y∗∗) ∝ cos(γ)
r



Example 1- T (y) : ȳ = 0,
∑
|yi − ȳ | = 1

• MCMC for [Y1|θ,T (y),Y1 > 0], θ = (µ, σ) = (0, 1)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

y1

de
ns

ity



Example 1- T (y) : ȳ = 0,
∑
|yi − ȳ | = 1

• MCMC for [Y1|θ,T (y),Y1 > 0], µ = (.4,−.5, .1), σ = 0.1
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Example 1- T (y) : ȳ = 0,
∑
|yi − ȳ | = 1

• MCMC for [Y1|θ,T (y),Y1 > 0], µ = (.4,−.5, .1), σ = 0.3
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Example 2- T (y) : min y = 0,
∑

(yi −min y)2 = 1
n = 3: sample space does not lie in a plane
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Example 2- T (y) : min y = 0,
∑

(yi −min y)2 = 1
Two dimensional view of the plane

●

normal to circlenormal to shape

γ attenuation: cos(γ)



Example 2- T (y) : min y = 0,
∑

(yi −min y)2 = 1

• Earlier adjustments result in distribution in the plane

• Need the distribution in the original space

• One final adjustment

• Comparison of the infinitesimal arc lengths in projected space
to full space
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Example 2- T (y) : min y = 0,
∑

(yi −min y)2 = 1
• MCMC for [Y1|θ,T (y),Y2 = 0], θ = (µ, σ) = (0, 1)
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Example 2- T (y) : min y = 0,
∑

(yi −min y)2 = 1
• Without the second adjustment
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Example 2- T (y) : min y = 0,
∑

(yi −min y)2 = 1
• MCMC for [Y2|θ,T (y),Y1 = 0], µ = (−.5, .4, .1), σ = .5
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Summary of the MH Step

• The recipe for the proposal

• Start Y ∗ uniform on unit sphere

• Transform H : Y ∗ → Y ∗∗ so that T (Y ∗∗) = T (y)

• H involves

• Stretch in deviation space: r−1

• Attenuation in the deviation space

• Attenuation for the original space



Summary of the MH Step

• T (Y ) = (L(Y ),S(Y ))

• Both attenuations involve ∇L and ∇S

• Extension to n dimensions

• Stretch in deviation space: r−(n−2)

• Attenuation in deviation space: compare norms of the n − 1
dimensional tangent spaces for the sphere and the target
manifold

• Attenuation in original space: comparing n − 2 dimensional
volumes in the original space to the deviation space

• Calculations need ∇L and ∇S



Conclusion

• The illustration today concerned the location and scale
problem

• Concern is outliers

• Modeling and computation extends to more interesting
structures

• Inclusion of covariates

• Hierarchical models

• Benefits include

• Reduced bias and smaller posterior variance

• Ability to pool information

• Ability to incorporate external information

• Blended paradigm also addresses model misspecification
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