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Introduction to the Blended Paradigm

Traditional Bayesian Framework:
e Y ~[Y]|6] and 6 ~ [0]

e Given the observed Y =y, pass to the posterior:

[01y] o [y|6][6]

Deficiencies:

e We may not fully believe the likelihood [Y]6]

e More modeling may not fix this problem

Acknowledge inadequacy of our model

Drive Bayesian update with the ‘good’ portion of the
likelihood



Introduction to the Blended Paradigm

e Blended Paradigm Framework:
e Here, T(Y) is a ‘robust’ summary of the data

e ‘Robust’ means insensitivity to the deficiencies in the model
for inferences of interest

e Model for [Y|6] implies model for [T(Y)|6]
o T(Y)~[T(Y)|0] and 6 ~ [6]
e Given the observed T(y) = t, pass to the posterior:

[01¢] o [¢]6][6]

e Implementation via MCMC

e Goal : To obtain better inference through a wise choice of
T(Y)



Proof of Concept-Outliers

e Simon Newcomb's famous measurements of the speed of light
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Model

Model for the data: Y; 2 N(p,0?),i=1,---,66

o Full Likelihood
o Restricted Likelihood T(Y) = ({i, )

e (fi,6) robust M-estimators using Huber's loss and ‘Proposal 2'

Fixed priors: p ~ N(n,72), 0 ~ IG(c, B)

n=-222, 7 =540, a =5, 3 =200

Priors derived from experimental data on the speed of light
conducted before Newcomb's study



Posteriors
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Posteriors
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e Overall conclusion: Reduced bias and variance



Model Fitting

[T(Y)|0]- typically intractable

Small dimensions: grid estimation

Larger dimensions: data augmented MCMC
« [6,Y[T(y)]
o [0]Y, T(y)]=[0Y]

e [Y16, T()]

First step: full posterior

Second step: Metropolis-Hastings



MH Step

e MH ratio i .
™10, t] p(yeurrly™)

[)/Curr’97 t] p(y** ‘YCurr)

e Ratio of Likelihoods: normalizing constants cancel
e Proposal density:

e Start Y* ~ g
e Transform H: Y* — Y** so that T(Y**) = T(y)

e Use this recipe to derive the proposal density (not a standard
transformation)



Example 1- T(y):y=0,> |y, —y| =1

n = 3: sample space lies on the plane defined by y =0



Example 1- T(y) : 7 = 0,5 |y — | = 1

Two dimensional view of the plane
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Example 1- T(y) : 7 = 0,5 |y — | = 1

Two dimensional view of the plane




Example 1- T(y) : 7 = 0,5 |y — | = 1

Two dimensional view of the plane
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Example 1- T(y) : 7 = 0,5 |y — | = 1

Two dimensional view of the plane
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Example 1- T(y) : 7 = 0,5 |y — | = 1

Two dimensional view of the plane

tangent to circle

attenuation: cos(y)

tangent to shape



Example 1- T(y) : 7 = 0,5 |y — 7| = 1

e Proposal density

e Starting distribution g: uniform on the circle
e Adjustment 1: Stretch out to the target shape
-1

o r

e Adjustment 2: Attenuation to get density along the target
shape

o cos(y)

° p(y**) x Cosr("f)



Example 1- T(y) 7 = 0, % |y — 7| = 1
e MCMC for [Y116, T(y), Y1 > 0],0 = (u,0) = (0,1)
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Example 1- T(y) 17 = 0,3 |yi — | = 1
e MCMC for [Y11|6, T(y), Y1 > 0], p = (.4,—.5,.1),0 =0.1

0.0 0.1 0.2 0.3 0.4 0.5



Example 1- T(y):y=0,> |y, —y| =1
e MCMC for [Y1|0, T(y), Y1 > 0], u = (.4,—.5,.1),0 = 0.3

0.0 0.1 0.2 0.3 0.4 0.5



Example 2- T(y) :miny =0, (y; —miny)? =1

n = 3: sample space does not lie in a plane



Example 2- T(y) :miny =0, (y; —miny)? =1

n = 3: sample space does not lie in a plane



Example 2- T(y) :miny =0, (y; —miny)? =1

Two dimensional view of the plane
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Example 2- T(y) :miny =0, (y; —miny)? =1

Two dimensional view of the plane

normal to shape normal to circle
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Example 2- T(y) :miny =0, (y; —miny)? =1

Two dimensional view of the plane

normal to shape normal to circle

attenuation: cos(y)



Example 2- T(y) :miny =0, (y; —miny)? =1

o Earlier adjustments result in distribution in the plane
e Need the distribution in the original space

e One final adjustment

e Comparison of the infinitesimal arc lengths in projected space
to full space



Example 2- T(y) :miny =0, (y; —miny)? =1



Example 2- T(y) :miny =0, (y; —miny)? =1



Example 2- T(y) :miny =0, (y; —miny)? =1
o MCMC for [Y4]0, T(y), Yo = 0], 0 = (11, 0) = (0, 1)

0.0 0.2 0.4 0.6 0.8 1.0



Example 2- T(y) :miny =0, (y; —miny)? =1

e Without the second adjustment

0.0 0.2 0.4 0.6 0.8 1.0



Example 2- T(y) :miny =0, (y; —miny)? =1
o MCMC for [Ya]0, T(y), Y1 = 0], p = (—.5,.4,.1), 0 = .5

0.0 0.2 0.4 0.6 0.8 1.0



Summary of the MH Step

e The recipe for the proposal

e Start Y* uniform on unit sphere

e Transform H: Y* — Y** so that T(Y**) = T(y)

e H involves

e Stretch in deviation space: r~1

e Attenuation in the deviation space

e Attenuation for the original space



Summary of the MH Step

o T(Y) = (L(Y),5(Y))
e Both attenuations involve VL and VS
e Extension to n dimensions
e Stretch in deviation space: r—("=2)
e Attenuation in deviation space: compare norms of the n — 1
dimensional tangent spaces for the sphere and the target

manifold

e Attenuation in original space: comparing n — 2 dimensional
volumes in the original space to the deviation space

e Calculations need VL and VS



Conclusion

e The illustration today concerned the location and scale
problem

e Concern is outliers

e Modeling and computation extends to more interesting
structures

e Inclusion of covariates
e Hierarchical models
e Benefits include

e Reduced bias and smaller posterior variance
o Ability to pool information

o Ability to incorporate external information

e Blended paradigm also addresses model misspecification
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