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Introduction to the Blended Paradigm

Introduction to the Blended Paradigm

Traditional Bayesian Framework:

X ∼ f (X |θ) and θ ∼ π(θ)
Pass to the posterior: π(θ|X ) ∝ f (X |θ)π(θ)

Deficiencies:

We may not fully believe the likelihood f (X |θ)
Asymptotics do not fix this problem
More modeling may not fix this problem

Acknowledge inadequacy of our model

Drive Bayesian update with the ‘good’ portion of the data
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Introduction to the Blended Paradigm

Introduction to the Blended Paradigm

Blended Paradigm Framework:
Here, T (X ) is a ‘robust’ summary of the data.

‘Robust’ means insensitivity to the deficiencies in the model for
inferences of interest
Model for f (X |θ) implies model for f (T (X )|θ)

T (X ) ∼ f (T (X )|θ) and θ ∼ π(θ)
Pass to the posterior: π(θ|T (X )) ∝ f (T (X )|θ)π(θ)
Implementation via MCMC

Goal : To obtain better inference through a wise choice of T (X )
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Introduction to the Blended Paradigm Proof of Concept-Outliers

Proof of Concept-Outliers

Simulation study

True model: Xi ∼ (1− p)N(θ, σ2) + pN(θ, 100σ2), i = 1, 2, · · · , 100
(θ, σ2) = (0, 1), p = 0.2
We regard the large variance component as outliers
Alternately, a thick tailed distribution

Model for Analysis:

Standard normal theory model
Xi ∼ N(θ, σ2)
θ ∼ N(5, 4), σ2 ∼ IG (5, 5)
Note that the prior is off-center from the truth
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Introduction to the Blended Paradigm Proof of Concept-Outliers

Compare two likelihoods

Full Likelihood (Traditional Bayes): T (X ) = (X1, · · · ,X100)
Restricted Likelihood (Order Statistics):
T (X ) = (X(31),X(32), · · · ,X(70))

The ‘True’ mixture likelihood (p known) is fit as a reference

Details of the simulation

Sample the posteriors via MH
Replicate the simulation 50 times
For each replicate, obtain estimates of the posterior means under each
model
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Introduction to the Blended Paradigm Order Statistics

Simulation Results
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Introduction to the Blended Paradigm Order Statistics

Simulation Results

Using the restricted likelihood we have:

Smaller bias
Smaller variance

Related to the nuisance parameter σ2

Under the mixture likelihood: σ2 = 1
Under the full likelihood: σ2 = 20.8
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Introduction to the Blended Paradigm Order Statistics

Simulation Results
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Introduction to the Blended Paradigm Order Statistics

Choosing the Timming Fraction (K)
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Introduction to the Blended Paradigm Order Statistics

Choosing the Timming Fraction (K)

Choosing the trimming fraction matters – a little

20% outliers on average
Should trim more than 10% from each tail
Trimming less moves towards traditional Bayes
Trimming more moves towards T (X ) = Median(X ) (not the true
mixture likelihood)
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Introduction to the Blended Paradigm Order Statistics

What is Sacrificed?

Simulation Study:

True Model: Xi ∼ N(θ, σ2)
(θ, σ2) = (0, 1)

Model for Analysis:

Xi ∼ N(θ, σ2)
θ ∼ N(5, 4), σ2 ∼ IG (5, 5)
Use both the full and restricted likelihoods
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Introduction to the Blended Paradigm Order Statistics

What is Sacrificed?
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Introduction to the Blended Paradigm Order Statistics

Conclusions

Blended Paradigm offers a method of inference when we are unsure of
our likelihood

Acknowledges the inadequacy of our model

Drive the Bayesian update with the ‘good’ portion of the likelihood

Simulations show the potential for reducing bias and variance

This talk focused on‘trimming’ summaries (i.e. order statistics)

The idea extends to other classical robust statistics
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