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We study regression using functional predictors in situations where these func-

tions contains both phase and amplitude variability. In other words, the functions

are misaligned due to errors in time measurements, and these errors can signif-

icantly degrade both model estimation and prediction performance. The current

techniques either ignore the phase variability, or handle it via preprocessing, that

is, use an off-the-shelf technique for functional alignment and phase removal. We

develop a functional principal component regression model which has a compre-

hensive approach in handling phase and amplitude variability. The model utilizes

a mathematical representation of the data known as the square-root slope function.

These functions preserve the L2 norm under warping and are ideally suited for simul-

taneous estimation of regression and warping parameters. Using both simulated and

real-world data sets, we demonstrate our approach and evaluate its prediction perfor-

mance relative to current models. In addition, we propose an extension to functional

logistic and multinomial logistic regression.
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1 INTRODUCTION

The statistical analysis of functional data is fast gaining

prominence in the statistics community because this kind

of “big data” is central to many applications. For instance,

the functional data can be found in a broad swath of appli-

cation areas ranging from biology, medicine, and chemistry

to geology, sports, and financial analysis. In this problem,

some of the random quantities of interest are functions

of independent variables (eg, time, frequency), and are stud-

ied as elements of an appropriate function space, often a

Hilbert space. The analysis can include common statistical

procedures such as computing statistical summaries, esti-

mating parametric and nonparametric distributions, and gen-

erating inferences under noisy observations. One common

problem in functional data analysis is regression modeling

where the function variables are used as predictors to estimate

a scalar response variable.

More precisely, let the predictor functions be given by {f i:

[0, T] → R, i= 1, 2, … , n} and the corresponding observa-

tions of a single variable be yi. The standard functional linear

regression model for this set of observations is

yi = 𝛼 + ∫
T

0

fi(t)𝛽(t)𝑑𝑡 + 𝜀i, i = 1, … , n (1)

where 𝛼 ∈ R is the intercept, 𝛽(t) is the regression-coefficient

function and 𝜀i ∈ R are random errors. This model was first

studied by Ramsay and Dalzell [28] and Cardot et al. [5]. The

model parameters are usually estimated by minimizing the

sum of squared errors (SSE),

{𝛼∗, 𝛽∗(t)} = arg min
𝛼,𝛽(t)

n∑
i=1

|||||yi − 𝛼 − ∫
T

0

fi(t)𝛽(t)𝑑𝑡
|||||
2

.

These values form maximum-likelihood estimators of

parameters under the additive white-Gaussian noise model.

One problem with this approach, is that for any finite n, since

𝛽 is a full function there are infinitely many solutions for 𝛽

without imposing any further restrictions. In other words, it is

an element of an infinite-dimensional space while its specifi-

cation for any n is finite dimensional. Ramsay and Silverman

[29] proposed two approaches to handle this issue: (a) Rep-

resent 𝛽(t) using p basis functions in which p is kept large to
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allow desired variations of 𝛽(t) (p≤ n) and (b) add a roughness

penalty term to the objective function (SSE) which selects a

smooth solution by finding an optimal balance between the

SSE and the roughness penalty. The basis can come from

Fourier analysis, splines, or fPCA [30].

Current literature in functional linear regression is focused

primarily on the estimation of the coefficient of 𝛽(t) under

a basis representation. For example, refs. [6,8,13,15] discuss

estimation and/or inference of 𝛽(t) for different cases for the

standard functional linear model and the interpretation of 𝛽(t).
Focusing on prediction of the scalar response, Cai and Hall

[4] studied the estimation of ∫ f i(t)𝛽(t) dt. In some situa-

tions the response variable yi is categorical and the standard

linear model will not suffice. James [14] extended the stan-

dard functional linear model to functional logistic regression

to be able to handle such situations. Müller and Stadtmüller

[27] extend the generalized model to contain a dimension

reduction by using a truncated Karhunen-Loève expansion.

Recently, Gertheiss et al. [10] included variable selection to

reduce the number of parameters in the generalized model.

In practice the predictor functions are observed at discrete

points and not the full interval [0, T]. Furthermore, in some

situations, these observations are corrupted by noise along

the time axis. That is, one observes {(t+ 𝜂(t), f (t))} instead

of {(t, f (t))} where the random variables 𝜂(t) are constrained

so that the observation times do not cross each other. While

some papers have assumed parametric models for 𝜂(t) [7]

and incorporated them in the estimation process, the oth-

ers have ignored them completely. It is more natural to treat

these measurement variables in a nonparametric form as fol-

lows: We assume that observation times are given by 𝛾(t)
where 𝛾 is a monotonic function with appropriate boundary

conditions (𝛾(0) =0, 𝛾(T)=T). Consequently, the observa-

tions are modeled as {𝛾(t), f (t)} where 𝛾 captures a random

noise component that needs accounting for in the estimation

process. The effect of 𝛾 is a warping of f with a nonlinear

shift in the locations of peaks and valleys but no changes

in the heights of those peaks and valleys; this warping dif-

fers across realizations (observations) and, hence, is termed

as warping or compositional noise. Some authors have also

called it the phase variability in functional data [25,33]. If

the phase variability is ignored, the resulting model may

fail to capture patterns present in the data and will lead to

inefficient data models. One way to handle this noise is to

capture both the phase and amplitude variability properly in

the regression model. It is more natural to include handling of

warping noise, or alignment, in the regression model estima-

tion itself and perform a joint inference on all model variables

under the same objective function. Recently, Gervini [11] has

proposed a functional linear regression model that includes

phase variability in the model. It uses a random-effect simul-

taneous linear model on the warping parameters and the

principal component scores (of aligned predictor functions).

However, this method involves fPCA on the original func-

tional space and has shown to be inferior for unaligned

data [23,37]. Tucker et al. [37] showed that if this variability is

not accounted for properly when performing fPCA, the results

will be misleading due to incorrect shape of the calculated

mean function.

In this paper we focus on problems where the functional

data contains random phase variability. To handle that vari-

ability, we propose a regression model that incorporates the

phase variability through the use of functional principal com-

ponent regression (fPCR) where this variability is handled in

a parsimonious way. The basic idea is to use a fPCA method

as the basis that is able to capture the amplitude variabil-

ity, phase variability, or both, in the regression problem. This

allows the model to capture the variability that is important in

predicting the outcome from the data. Using this representa-

tion and the geometry of the warping function 𝛾 , we construct

the model and outline the resulting prediction procedures. The

fPCR method was first proposed by Reiss and Ogden [30],

but they fail to account for the phase variability found in func-

tional data. Additionally, one could use a robust fPCA method

such as Bali et al. [1], but this method also fails to account for

phase and amplitude variability explicitly in the data. We then

extend this framework to the logistic regression case where

the response can take on categorical data. We will illustrate

this application using both simulated and real data sets, which

includes sonar, gait, and electrocardiogram data. The phys-

iological data are studied in the context of classification of

disease types or the separation of individuals.

The rest of this paper is organized as follows: In Section 2,

we review the relevant material from functional regression

and in Section 3 we develop the elastic fPCR model. In

Section 4 we extend the elastic fPCR to the logistic and multi-

nomial logistic case. In Sections 5 and 6, we report the results

of applying the proposed approach to a simulated data set and

seven real data sets from various application domains. Finally,

we close with a brief summary and some ideas for future work

in Section 7.

2 FUNCTIONAL PRINCIPAL COMPONENT
REGRESSION

We start with a more common functional regression model,

and then develop an “elastic” principal component version

that accounts for phase variability of functional data. With-

out loss of generality we assume the time interval of interest

to be [0, 1]. Let f be a real-valued function on [0, 1]; from a

theoretical perspective we restrict to functions that are abso-

lutely continuous on [0, 1] and we let  denote the set of all

such functions. In practice, since observed data are discrete,

this assumption is not a restriction.

2.1 fPCR Model

Let {f i} denote observations of a predictor function variable

and let yi ∈ R, be the corresponding response variable. The
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standard functional linear regression model for this set of

observations is

yi = 𝛼 + ⟨fi, 𝛽⟩ + 𝜀i, i = 1, … , n (2)

where ⟨f i, 𝛽⟩= ∫ f i(t)𝛽(t) dt is the L2 functional inner prod-

uct, 𝛼 is the bias and 𝛽(t) is the regression coefficient function.

The model is usually determined by minimizing the SSE.

{𝛼∗, 𝛽∗(t)} = arg min
𝛼,𝛽(t)

n∑
i=1

||||yi − 𝛼 − ∫ fi(t)𝛽(t)𝑑𝑡
||||2. (3)

One problem with this approach, is that for any finite n, it

is possible to perfectly interpolate the responses if no restric-

tions were are placed on 𝛽(t). Specifically, since 𝛽(t) is infinite

dimensional, we have infinite degrees of freedom to form 𝛽(t)
in which we can make the SSE equal zero. Ramsay and Silver-

man [29] proposed two approaches with the first representing

𝛽(t) using a p-dimensional basis in which p is hopefully large

enough to capture all variations of 𝛽(t). The second approach

is adding a penalty term which shrinks the variability of 𝛽(t)
or smooths it response.

fPCR uses the principal components as the basis functions

where the model is determined by minimizing

{𝛼∗,b∗} = arg min
𝛼,b

n∑
i=1

||||||yi − 𝛼 −
no∑

j=1

⟨fi, 𝜉j⟩bj

||||||
2

, (4)

where p= no principal components are used, 𝜉(t) is the cor-

responding eigenfunction, and b= [b1, … , bj]. It should be

noted that f i(t) here is mean centered.

3 ELASTIC FPCR MODEL

In order to properly account for the variability we can use

the vertical fPCA and horizontal fPCA presented in Tucker

et al. [37]. These fPCA methods account for the variability,

by first separating the phase and amplitude and then perform-

ing the fPCA on the spaces separately. Using these methods

one can construct a regression on the amplitude space using

the square-root slope function (SRSF), q or specifically the

aligned SRSF q̃, and the phase space using the warping

functions, 𝛾 , the motivation for the using of SRSF will be

explained later. A third option is to use the method developed

by Lee and Jung [23] which is an extension of the method

developed by Tucker et al., Lee and Jung proposes a joint

fPCA which generates a function gC which concatenates the

function (f ) and the warping function. We propose a slight

modification of this work to use the SRSF, due to its bet-

ter theoretical properties. The concatonated function actually

works on a simplified geometry because the warping func-

tion is first transformed to the unit Hilbert Sphere and then

to its tangent space. This simplification and SRSF modifica-

tion allows the use of a metric that is a proper distance both

in the vertical and horizontal case. By using the joint fPCA

the regression model can be performed on the amplitude and

TABLE 1 Functional principal component regression domains

Vertical
fPCA

Horizontal
fPCA Joint fPCA

Representation q̃ 𝛾 gC = [q̃ 𝐶𝑣(t)]
Variability Amplitude Phase Amplitude + Phase

Metric Fisher-Rao Fisher-Rao Fisher-Rao

phase simultaneously. Table 1 presents the three domains and

where the regression is performed.

3.1 Elastic fPCA

We begin by giving a short review of the vertical and horizon-

tal fPCA of Tucker et al. [37] and the joint phase-amplitude

fPCA method of Lee and Jung [23], with a slight modifica-

tion which will be described clearly in later sections. These

methods are based on the functional data analysis approach

outlined in Srivastava et al. [36], Kurtek et al. [21], and

Tucker et al. [37]; see those references for more details on this

background material.

Let Γ be the set of orientation-preserving diffeomorphisms

of the unit interval [0, 1]: Γ= {𝛾: [0, 1]→ [0, 1]| 𝛾(0)= 0,

𝛾(1)= 1, 𝛾 is a diffeomorphism}. Elements of Γ play the role

of warping functions. For any f ∈ and 𝛾 ∈Γ, the compo-

sition f ◦ 𝛾 denotes the time-warping of f by 𝛾 . With the

composition operation, the set Γ is a Lie group with the iden-

tity element 𝛾 id(t)= t. This is an important observation since

the group structure of Γ is seldom utilized in past papers on

functional data analysis.

As described in Tucker et al. [37], there are two metrics

to measure the amplitude and phase variability of functions.

These metrics are proper distances, one on the quotient space

 /Γ (ie, amplitude) and the other on the group Γ (ie, phase).

The amplitude or y-distance for any two functions f 1, f 2 ∈
is defined to be

da(f1, f2) = inf
𝛾∈Γ

‖q1 − (q2 ◦ 𝛾)
√
𝛾̇‖, (5)

where q(t)= sign(f (t))|ḟ (t)| is known as the SRSF (f rep-

resents the derivative of f ). The optimization problem in

Equation 3.1 is most commonly solved using a Dynamic

Programming algorithm; see Robinson [31] for a detailed

description. If f is absolutely continuous, then q ∈ L2([0, 1],

R) (Robinson [31]), henceforth denoted by L2. For the prop-

erties of the SRSF and the reason for its use in this setting,

we refer the reader to Srivastava et al. [35], Marron et al. [25]

and Lahiri et al. [22]. Moreover, it can be shown that for any

𝛾1, 𝛾2 ∈ Γ, we have da(f 1 ◦ 𝛾1, f 2 ◦ 𝛾2)= da(f 1, f 2), that is,

the amplitude distance is invariant to function warping.

3.2 Simplifying geometry of Γ

The space of warping functions, Γ, is an infinite-dimensional

nonlinear manifold, and therefore cannot be treated as a stan-

dard Hilbert space. To overcome this problem, we will use
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FIGURE 1 Depiction of the SRSF space of warping functions as a sphere

and a tangent space at the identity element 𝜓 id

tools from differential geometry to perform statistical anal-

yses and to model the warping functions. The following

framework was previously used in various settings including:

(a) modeling re-parameterizations of curves [32], (b) putting

prior distributions on warping functions [19,24], (c) study-

ing execution rates of human activities in videos [39], and

many others. It is also very closely related to the square-root

representation of probability density functions introduced by

Bhattacharya [2], and later used for various statistical tasks

(eg, [20]).

We represent an element 𝛾 ∈ Γ by the square-root of its

derivative 𝜓 =
√
𝛾̇ . Note that this is the same as the SRSF

defined earlier, and takes this form since 𝛾̇ > 0. The iden-

tity 𝛾 id maps to a constant function with value 𝜓 id(t)= 1.

Since 𝛾(0)= 0, the mapping from 𝛾 to 𝜓 is invertible and

one can reconstruct 𝛾 from 𝜓 using 𝛾(t)= ∫ t
0
𝜓(s)2ds. An

important advantage of this transformation is that since‖𝜓‖2 = ∫ 1

0
𝜓(t)2dt= ∫ 1

0
𝛾̇ (t)dt= 𝛾(1)− 𝛾(0)= 1, the set of all

such 𝜓s is the positive orthant of the Hilbert sphere Ψ = S
+
∞

(ie, a unit sphere in the Hilbert space L2). In other words, the

square-root representation simplifies the complicated geom-

etry of Γ to a unit sphere. The distance between any two

warping functions, that is, the phase distance, is exactly the

arc-length between their corresponding SRSFs on the unit

sphere S∞:

dp(𝛾1, 𝛾2) = d𝜓 (𝜓1, 𝜓2) ≡ cos−1

(
∫

1

0

𝜓1(t)𝜓2(t)𝑑𝑡
)
.

Figure 1 shows an illustration of the SRSF space of warping

functions as a unit sphere.

3.3 Mapping to the tangent space at identity element

While the geometry of Ψ ⊂ S∞ is more tractable, it is still a

nonlinear manifold and computing standard statistics remains

difficult. Instead, we use a tangent (vector) space at a certain

fixed point for further analysis. The tangent space at any point

𝜓 ∈Ψ is given by:T𝜓 (Ψ) =
{

v ∈ L2| ∫ 1

0
v(t)𝜓(t)𝑑𝑡 = 0

}
. To

map between the representation space Ψ and tangent spaces,

one requires the exponential and inverse-exponential map-

pings. The exponential map at a point𝜓 ∈Ψ denoted by exp𝜓 :

T𝜓 (Ψ) →Ψ, is defined as

exp𝜓 (v) = cos(‖v‖)𝜓 + sin(‖v‖) v‖v‖ , (6)

where v ∈ T𝜓 (Ψ). Thus, exp𝜓 (v) maps points from the tan-

gent space at 𝜓 to the representation space Ψ. Similarly, the

inverse-exponential map, denoted by exp𝜓
−1: Ψ →T𝜓 (Ψ), is

defined as

exp−1
𝜓 (𝜓1) =

𝜃

sin(𝜃)
(𝜓1 − cos(𝜃)𝜓), (7)

where 𝜃 = dp(𝛾1, 𝛾). This mapping takes points from the

representation space to the tangent space at 𝜓 .

The tangent space representation v is sometimes referred to

as a shooting vector, as depicted in Figure 1. The remaining

question is which tangent space should be used to represent

the warping functions. A sensible point onΨ to define the tan-

gent space is at the sample Karcher mean 𝜇𝜓 (corresponding

to 𝜇𝛾 ) of the given warping functions or the identity element

𝜓 id. For details on the definition of the sample Karcher mean

and how to compute it, please refer to Tucker et al. [37].

3.4 Vertical Functional Principal Components

Let f 1,… , f n be a given set of functions, and q1,… ,qn be

the corresponding SRSFs, 𝜇q be their Karcher Mean, and let

q̃is be the corresponding aligned SRSFs using Algorithm 1

from Tucker et al. [37]. In performing vertical fPCA, one

also needs to include the variability associated with the initial

values, that is, {f i(0)}, of the given functions. Since repre-

senting functions by their SRSFs ignores vertical translation,

this variable is treated separately. That is, a functional vari-

able f is analyzed using the pair (q, f (0)) rather than just q.

This way, the mapping from the function space  to L2 ×R is

a bijection. In practice, where q is represented using a finite

partition of [0, 1], say with cardinality T , the combined vector

hi = [qi f i(0)] simply has dimension (T + 1) for fPCA. We can

define a sample covariance operator for the aligned combined

vector h̃= [q̃1 f i(0)] as

Kh = 1

n − 1

n∑
i=1

(h̃i − 𝜇h)(h̃i − 𝜇h)T ∈ R
(T+1)×(T+1) ,

where 𝜇h = [𝜇q f̄ (0)]. Taking the SVD, Kh =UhΣhVT
h , we

can calculate the directions of principle variability in the

given SRSFs using the first p≤ n columns of Uh and can

then converted back to the function space  , via integration,

for finding the principal components of the original func-

tional data. Moreover, we can calculate the observed principal

coefficients as ⟨h̃i, Uh, j⟩.
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One can then use this framework to visualize the vertical

principal-geodesic paths. The basic idea is to compute a few

points along geodesic path 𝜏 →𝜇h +
√
𝜏Σh,𝑗𝑗Uh, j for 𝜏 ∈ R

in L2, where Σh, jj and Uh, j are the jth singular value and col-

umn, respectively. Then, obtain principle paths in the function

space  by integration.

3.5 Horizontal functional principal components

To perform horizontal fPCA we will use the tangent space

at 𝜇𝜓 [33] to perform analysis, where 𝜇𝜓 is the mean of

the transformed warping functions. Algorithm 2 from Tucker

et al. [37] can be used to calculate this mean. In this tangent

space we can define a sample covariance function:

K𝜓 = 1

n − 1

n∑
i=1

vivT
i ∈ R

T×T .

The singular value decomposition (SVD) of K𝜓 =U𝜓Σ𝜓VT
𝜓

provides the estimated principal components of {𝜓 i}: the

principal directions U𝜓 , j and the observed principal coeffi-

cients ⟨vi, U𝜓 , j⟩. This analysis on S∞ is similar to the ideas

presented in study of Srivatsava et al. [34] although one can

also use the idea of principal nested sphere for this analy-

sis [16]. The columns of U𝜓 can then used to visualize the

principal geodesic paths.

3.6 Joint functional principal components

To model the association between the amplitude of a function

and its phase, Lee and Jung [23] use a concatenated func-

tion gC on the extended domain [0, 2] (for some C> 0). The

domain is extended as a concatenated function g(t) is created

as a combination of the original function and the warping

function. Since the domain is [0, 1] for both the function and

warping function, we treat g(t) on the the extended domain as

is defined below:

gC(t) =

{
f ∗(t), t ∈ [0, 1)
𝐶𝑣(t − 1), t ∈ [1, 2]

(8)

where f * only contains the function’s amplitude (ie, after

alignment via SRSFs). The superscript of C is used to denote

the dependence of the principal coefficients on the scaling

factor. Furthermore, Lee and Jung [23] assume that gC ∈
L2([0, 2], R). The parameter C is introduced to adjust for the

scaling imbalance between f * and v. In the current work, we

make a modification to the method of Lee and Jung [23]. In

particular, it seems more appropriate to construct the function

gC using the SRSF q* of the aligned function f *, since q* is

guaranteed to be an element of L2. Explicitly, we will use h̃
as it includes the vertical translation value f i(0). Thus, with a

slight abuse in notation, we proceed with the following joint

representation of amplitude and phase:

gC(t) =

{
h∗(t), t ∈ [0, 1)
𝐶𝑣(t − 1), t ∈ [1, 2]

(9)

where C is again used to adjust for the scaling imbalance

between h* and v.

Henceforth, we assume that h* is sampled using T + 1

points and v is sampled using T points, making the dimension-

ality of gC ∈R2T + 1. Then, given a sample of amplitude-phase

functions {g1
C, … , gn

C}, and their sample mean 𝜇C
g =

[𝜇q∗ 𝜇
C
v ], we can compute the sample covariance matrix as

KC
g = 1

n − 1

n∑
i=1

(gC
i − 𝜇C

g )(gC
i − 𝜇C

g )T ∈ R
(2T+1)×(2T+1). (10)

It should be noted that the mean 𝜇C
v is always zero. Taking

the SVD, Kg
C =Ug

CΣg
C (Vg

C)T, we calculate the joint prin-

cipal directions of variability in the given amplitude-phase

functions using the first p≤ n columns of Ug
C. These can be

converted back to the original representation spaces ( and 𝛾)

using the mappings defined earlier. Moreover, one can calcu-

late the observed principal coefficients as ⟨gi
C, Ug, j

C ⟩, for the

ith function with the jth principal component.

This framework can be used to visualize the principal

modes of variability. First, the matrix Ug
C is partitioned into

the pair (Uq
*C, Uv

C). Then, the amplitude and phase paths

within one SD of the mean are computed as

q∗C
𝜏,j = 𝜇q∗ + 𝜏

√
ΣC

g,𝑗𝑗U
C
q∗,j (11)

vC
𝜏,j = 𝜏

√
ΣC

g,𝑗𝑗

C
UC

v,j, (12)

where 𝜏 ∈ R, Σg, jj and Uj
C are the jth principal compo-

nent variance and direction of variability, respectively. Then,

one can obtain a joint amplitude-phase principal path by

composing f ∗C
𝜏,j (this is the function corresponding to SRSF

q∗C
𝜏,j ) with 𝛾C

𝜏,j (this is the warping function corresponding

to vC
𝜏,j).

The results of the above procedure clearly differ for varia-

tions of C. For example, using small values of C, the first few

principal directions of variability will capture more amplitude

variation, while for large values of C, the leading directions

reflect more phase variation. Lee and Jung [23] present a

data-driven method for estimating C for a given sample of

functions which minimizes the reconstruction error. We use

this approach in the current work to determine an appropriate

value of C and a sensitivity study will be provided later on in

the paper determining its impact on regression performance.

Other metrics in cross-validation can be used such as predic-

tion performance or selecting C based on which variability

the user wants to emphasize in the data.

3.7 Elastic fPCR Model

The regression model then is

y = 𝛼 +
no∑

j=1

⟨xi, 𝜉j⟩bj (13)
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and can be found by solving

{𝛼∗,b∗} = arg min
𝛼,b

⎡⎢⎢⎣
n∑

i=1

||||||yi − 𝛼 −
no∑

j=1

⟨xi, 𝜉j⟩bj

||||||
2⎤⎥⎥⎦ , (14)

where the appropriate function is substituted in for xi and

appropriate eigenfuction for 𝜉j from Table 1 depending on

which fPCA is used for the regression.

The solution for the optimal 𝛼* and b* is found using ordi-

nary least squares. Define Z = [1 Θ], where 1 is a vector of

ones and Θ ∈ RN × no is the matrix containing the principal

coefficients for the N samples for no principal components

and y= [y1, … , yn]T. Then the solution for 𝛼* and b* is

[𝛼∗,b∗]T = (ZTZ)−1ZTy.

We perform fPCA in the SRSF space under the L2 norm for

the amplitude and performing fPCA in the tangent space of

warping functions after the square-root transform. Since these

fPCA’s are identical to the fPCA one does in a Hilbert space

under the L2 norm, the standard asymptotic analysis directly

applies [5,9,30].

4 ELASTIC GENERALIZED FPCR MODEL

We now develop the generalized version of the Elastic fPCR

model and then apply it to the logistic and multinomial logis-

tic case. This model is an extension of the linear regression

model with a given appropriate link function. The elastic

generalized regression model is defined as

y = h

( no∑
j=1

⟨xi, 𝜉j⟩bj

)
,

where h(⋅) is the link function. As with the linear model one

substitutes the appropriate eigenfunction for 𝜉j from Table 1

depending on which fPCA is used for the regression. The

choice of the link function determines the type of model. In

this paper we study the logistic functional regression model

and will discuss these more fully next.

4.1 Logistic functional regression model

Let {f i} denote observations of a predictor function variable

and let yi ∈ {−1, 1}, for i= 1, … , n be the corresponding

binary response variable. We define the probability of the

function f i being in class 1 (yi = 1) as

P(yi = 1|fi) = 1

1 + exp
(
−
[
𝛼 + ∫ 1

0
fi(t)𝛽(t)𝑑𝑡

]) .
This is nothing but the logistic link function

𝜙(t)= 1/(1+ exp(−t)) applied to the conditional mean in a

linear regression model: 𝛼 + ∫ 1

0
fi(t)𝛽(t)𝑑𝑡[14]. Using this

relation, and the fact that P(y=−1|f i)= 1−P(y= 1|f i), we

can express the data likelihood as:

𝜋({yi}|{fi}, 𝛼, 𝛽) =
n∏

i=1

1

1 + exp
(
−yi

[
𝛼 + ∫ 1

0
fi(t)𝛽(t)𝑑𝑡

]) .
(15)

Assuming we observe a sequence of i.i.d. pairs {f i(t),
yi}, i= 1,...,n, the model is identified by maximizing the

log-likelihood according to,

{𝛼∗, 𝛽∗} = arg max
𝛼,𝛽(t)

(log𝜋({yi}|{fi}, 𝛼, 𝛽)).

This optimization has been the main focus of the current

literature (eg, [6,13,29]).

4.2 Elastic logistic fPCR

Now consider the situation where functional predictors can

include phase variability as well as the amplitude variability.

We will use the Elastic fPCR method with the logistic link

function

𝜋({yi}|{fi}, 𝛼,b) =
n∏

i=1

1

1 + exp
(
−yi

[
𝛼 +

∑no
j=1

⟨xi, 𝜉j⟩bj

])
where the appropriate fPCA model is used for the proper

variability.

The search for 𝛼 and b is performed by maximizing the

log-likelihood. We can combine all the parameters—intercept

𝛼 and coefficients bis—in a vector form 𝜽= [𝛼, b1, … , bno]
T

and let zi = [1, ⟨xi𝜉1⟩, … , ⟨xi𝜉no⟩]T. The optimal parameter

vector is then defined according to:

𝜽
∗ = arg max

𝜽∈R
p+1

n∑
i=1

log(𝜙(yi𝜽
Tzi)), (16)

where 𝜙(t)= 1/(1+ exp(−t)). There is no known ana-

lytical solution to this optimization problem. Since the

objective function is concave, we can use a numeri-

cal method such as Conjugate Gradient or the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm (Mordecai

[26]) for finding 𝜽
*. To use these algorithms we need the

gradient of the log-likelihood (log 𝜋[{yi}|{f i}, 𝛼, 𝛽]), which

is given by:

𝛻L(𝜽) =
n∑

i=1

−yizi(𝜙(yi𝜽
Tzi) − 1).

In this paper we will use the Limited Memory BFGS

(L-BFGS) algorithm due to its storage efficiency in deal-

ing with a large number of predictors [3]. Similar to ideas

discussed in the study of ref. [10], one can also seek a

sparse representation by including a L1 or L2 penalty on b in

Equation 16.

4.3 Extension to Elastic Multinomial Logistic fPCR

We can extend the elastic logistic fPCR to the case of multi-

nomial response, that is, yi has more than two classes. In this

case, we have observations {(f i(t), yi)} and the response vari-

able can take on m categories, yi ∈ {1, … , m}, for i= 1,

… , n. For simplification, we abuse the notation by cod-

ing the response variable y as a m-dimensional vector with

a 1 in the kth component when y= k and zero, otherwise.
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FIGURE 2 Simulated regression data with phase and amplitude variability. (A) Original function, (B) warped function, (C) response variable

Next, we define the probability of the function f being in

class k as

P(y(k) = 1|{𝛼(j)}, {b(j)}, f )

=
exp

(
𝛼(k) +

∑no
j=1

⟨x, 𝜉j⟩b(k)
j

)
1 +

∑m−1

l=1 exp
(
𝛼(l) +

∑no
j=1

⟨x, 𝜉j⟩b(l)
j

) .
We assume 𝛼(m) = 0 and b(m) = 0 without loss of generality.

Using the above probability and the multinomial definition

of the problem, we can express the log-likelihood of observa-

tions {(xi(t), yi)} as

Lm({𝛼(i)}, {b(i)}) =
n∑

i=1

[m−1∑
k=1

y(k)i

[
𝛼(k) +

no∑
j=1

⟨xi, 𝜉j⟩b(k)
j

]

− log

(
1 +

m−1∑
l=1

exp

(
𝛼(l) +

no∑
j=1

⟨xi, 𝜉j⟩b(l)
j

))]
,

where once again the appropriate fPCA model is used for

dimension reduction and modeling.

The optimal {𝛼*(i)} and {b*(i)} can be found as earlier

by maximizing the log-likelihood. We can re-express the

maximization of the log-likelihood as:

𝜽
∗= arg max

𝜽

n∑
i=1

[m−1∑
j=1

y(j)i 𝜽
(j)Tzi − log

(
1+

m−1∑
j=1

exp(𝜽(j)Tzi)

)]
,

(17)

where 𝜽= [𝛼(k), b1
(k), … , b(k)

no
]T and zi = [1, ⟨xi𝜉1⟩,… ,⟨xi𝜉no⟩]T. There is no direct analytical solution to this opti-

mization and it has to be solved numerically. Since, the

function is concave we will use the L-BFGS algorithm to

find the solution numerically. To use this algorithm we need

the gradient of the log-likelihood, which is given by:

𝜕Lm(𝜽)
𝜕𝜽(k) =

n∑
i=1

[
y(k)i zi −

1

1 +
∑m−1

j=1 exp(𝜽(j)Tzi)
exp(𝜽(k)Tzi)z

]
.

We then can find the optimal {𝛼*(j)} and {b*(j)} using

L-BFGS.

5 SIMULATION RESULTS

5.1 Elastic fPCR

To illustrate the proposed elastic functional regression

method we applied the model to a simulated data constructed

using

fi(t) = ai
1√

2𝜋𝜎2

exp

(
−
(t − 𝜇j)2

2𝜎2

)
,

where ai ∼ (dj, 0.05). The means were chosen according to

three models: (a) Combined amplitude and phase variability

(𝜇j ∈ [0.35, 0.37, 0.40] and dj ∈ [4, 3, 2]), (b) Amplitude vari-

ability only (𝜇j ∈ [0.35, 0.35, 0.35] and dj ∈ [4, 3.7, 4]), and

(c) phase variability only (𝜇j ∈ [0.35, 0.40, 0.50] and dj ∈ [4,

4, 4]). A total of 20 functions were generated for each case and

𝜎 = 0.075. The generated functions are shown in Figure 2A,

3A, and 4A, for cases 1, 2, and 3, respectively. The func-

tions are then randomly warped to generate the warped data,

{f i} as shown in Figure 2B, 3B, and 4B, respectively. The

response variable yi was generated according to Equation 2.1

with 𝛼 = 0, 𝛽(t)= 0.5sin(2𝜋t)+ 0.9cos(2𝜋t), and is shown in

Figure 2C, 3C, and 4C.

Table 2 provides the SSE for each of the three cases

with the lowest SSE shown in bold computed using 5-fold

cross-validation. In the table we present the mean of the SSE

across the folds, along with the SD. For the data with the com-

bined variability, the joint fPCA in the elastic fPCR model is

slightly out performed by the horizontal fPCA. In the cases

with both the vertical and horizontal variability, the joint elas-

tic fPCA method performed the best with the corresponding

vertical or horizontal fPCA method being very close. This is

somewhat expected as the joint fPCA method is able to cap-

ture both types of variability. We compared the results from

the elastic method to those using standard fPCR found in the

literature on the warped data and those results are shown in the

last column. In all cases the elastic method outperforms the

standard fPCR method presented by Reiss and Ogden [30].

For the use of the joint fPCA in the elastic fPCR model, it

is necessary to choose the parameter C to correct for scaling
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FIGURE 3 Simulated regression data with amplitude variability. (A) Original function, (B) warped function, (C) response variable
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FIGURE 4 Simulated regression data with phase variability. (A) Original function, (B) warped function, (C) response variable

TABLE 2 Calculated SSE values using four different fPCR methods for three different types of variability

Elastic joint Elastic vertical Elastic horizontal Standard

Combined 0.0875 (0.0237) 0.3498 (0.1248) 0.0838 (0.0300) 0.5075 (0.1483)

Vertical 0.2345 (0.0905) 0.2390 (0.0869) 2.0782 (1.9058) 0.3173 (0.0393)

Horizontal 0.1474 (0.0998) 9.1292 (5.3023) 0.2155 (0.1339) 1.8729 (1.1719)

imbalance and for minimizing the reconstruction error or via

cross-validation. The value of C can have a significant effect

on the regression model performance and we have looked at

its effect on the SSE for the three types of variability presented

in Figures 2–4. For each of the three cases, we varied C from

1 to 120 and collected the results. The lowest SSE for each

variability type is different, and for the combined variability

being the largest value. This makes sense because when the

variability is combined a larger value is required to handle

the scaling imbalance. The SSE also begins to increase for

the vertical variability when C gets large, as all the weight

is on the warping functions and they are not good predic-

tors in this case. Additionally, for the horizontal variability,

the lowest SSE is for a low value of C and for the verti-

cal variability the lowest SSE is found for a higher value of

C (Figure 5).

5.2 Elastic logistic fPCR

To illustrate the elastic functional logistic regression method,

we evaluated the model on a similar simulated data used in the

previous section The means were chosen according to three

models: (a) combined amplitude and phase variability (𝜇j ∈
[0.35, 0.37] and dj ∈ [4, 3]), (b) amplitude variability only (𝜇j
∈ [0.35, 0.35] and dj ∈ [4, 3.7]), and (c) phase variability only

(𝜇j ∈ [0.35, 0.40] and dj ∈ [4, 4]). A total of 20 functions were

generated for each case using 𝜎 = 0.075. The functions were

then randomly warped to generate the warped data, {f i} and

the label was 1 for the first case and −1 for the second case.

Table 3 provides the probability of classification for each

of the three cases. The analysis was performed using 5-fold

cross-validation. In the table we present the mean probability

of classification across the folds, along with the SD. For the

data with the combined variability the joint fPCA in the elastic
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logistic fPCR model performed the best. For the cases with

both the vertical and horizontal variability, the correspond-

ing elastic fPCA methods performed well with the joint fPCA

method having the best performance. We compared the results

to the standard logistic fPCR, where the logistic link function

is applied to the method of Reiss and Ogden [30]. The results

are shown in the last column of Table 3. In all cases the elastic

method outperforms the standard logistic fPCR method.

5.3 Elastic multinomial logistic fPCR

To illustrate our elastic functional regression method, we

evaluated the model on a simulated data constructed in the

elastic fPCR case. Each of the functions was randomly warped

similar to the previous cases. The response variable yi in this

case was categorical with values j ∈ {1, 2, 3} depending on

the corresponding model.

Table 4 provides the probability of classification for each

of the three cases using 5-fold cross-validation. For the data

with the combined variability the horizontal and joint fPCA

in the elastic multinomial logistic fPCR model performed

the best. The cases with the vertical and horizontal variabil-

ity the corresponding elastic fPCA methods performed well

with the joint fPCA method having the best performance.

We compared the results to using standard multinomial logis-

tic fPCR found in the literature on the warped data and is

shown in the last column of Table 4. In all cases the elas-

tic method outperforms the standard multinomial logistic

fPCR method.

6 APPLICATIONS TO REAL DATA

Here, we present the results on multiple real data sets for the

three elastic regression models. For the elastic fPCR we use

the Sonar data set presented in Tucker et al. [38] where we

predict the volumes of two targets. We demonstrate the elastic

logistic fPCR model on three sets. The data consists of physi-

ological data, specifically, gait and electrocardiogram (ECG)

measurements from various patients. Phase variability is nat-

urally found in this type data, as during collection the signals

always start and stop at the different times for each measure-

ment. For example, when measuring a heartbeat one cannot

assure that the measurement starts on the same part of the

heartbeat for each patient measured. For the elastic multino-

mial logistic fPCR model we demonstrate on two sets that

consist of physiologic data similar to those use to test the

logistic regression method.

6.1 Sonar Data

The data set used in these experiments was collected at the

Naval Surface Warfare Center Panama City Division (NSWC

PCD) test pond. For a description of the pond and a similar

experimental setup the reader is referred to Kargl et al. [17].

The raw SONAR data was collected using a 1 to 30 kHz LFM

chirp and data was collected for a solid aluminum cylinder

and an aluminum pipe. The aluminum cylinder is 2-feet long

with a 1-feet diameter; while the pipe is 2-feet long with an

inner diameter of 1 feet and 3/8 inch wall thickness. During

the experiment the targets were placed with added uncertainty

of their orientation. The acoustic signals were generated from

the raw SONAR data to construct target strength as a function

of frequency and aspect angle.

Figure 6A presents the original functions for the acous-

tic color measurements at 0
◦

aspect angle. There appears to

be significant amplitude and phase variability between func-

tional measurements due to experimental collection uncer-

tainty. Not accounting for the phase variability can greatly

affect summary statistics and follow-on statistical models.

Figure 6B and C show the aligned functions (amplitude) and

warping functions (phase), respectively. Overall there is sig-

nificant difference between the original functions and the

aligned functions. With the large amount of phase variabil-

ity, the frequency structure of the data was lost. As a result,

cross-sectional methods without alignment will not capture

this important difference in the functions.

TABLE 3 Calculated probability of classification values using four different fPCR methods for three
different types of variability for logistic regression

Elastic joint Elastic vertical Elastic horizontal Standard

Combined 0.9750 (0.0342) 0 .9375 (0.0765) 0.9750 (0.0342) 0.9625 (0.0342)

Vertical 0.9250 (0.0280) 0.8500 (0.0948) 0.6250 (0.0625) 0.8750 (0.0442)

Horizontal 0.9250 (0.0815) 0.6000 (0.1630) 0.8875 (0.1355) 0.8750 (0.0442)
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TABLE 4 Calculated probability of classification values using four different fPCR methods for three
different types of variability for multinomial logistic regression

Elastic joint Elastic vertical Elastic horizontal Standard

Combined 0.9420 (0.0633) 0.9246 (0.0355) 0.9670 (0.0348) 0.8663 (0.1597)

Vertical 0.8589 (0.0801) 0.8916 (0.0229) 0.3822 (0.0710) 0.8749 (0.0780)

Horizontal 0.9176 (0.0480) 0.3822 (0.1036) 0.9666 (0.0187) 0.9510 (0.0436)
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FIGURE 6 Alignment of the sonar data set. (A) Original functions. (B) Aligned functions (amplitude). (C) Warping functions (phase)

Table 5 presents the SSE calculated using 5-fold

cross-validation. For this data set, we use 10 principal com-

ponents resulting in a 10-dimensional model for all four

methods. In the table we present the mean of the SSE across

the folds, along with the standard deviation. We compare

the three elastic versions and standard fPCR and the lowest

SSE is shown in bold. The lowest SSE is the joint elastic

fPCR method and all three elastic methods have lower SSE

than the standard method in predicting the volume from the

sonar data. With the high degree of phase and amplitude

variability in the data the elastic method has higher pre-

diction accuracy due to its ability to capture the variability

properly.

6.2 Gait Data

The Gait data is a collection of gait measurements for patients

having Parkinson’s disease and those not having Parkinson’s

disease and is from the gaitpdb data set on Physionet [12].

This database contains gait measurements from 93 patients

with idiopathic Parkinson’s disease and 73 healthy patients.

The gait was measured using vertical ground reaction force

records of subjects as they walked at their usual, self-selected

pace for approximately 2 minutes on level ground.

Figure 7A presents the original functions for the gait data

and are colored for the two different classes. There appears to

be significant amplitude and phase variability between func-

tional measurements due to experimental collection uncer-

tainty and where one subject will start and stop their gate.

Figure 7B and C show the aligned functions (amplitude) and

warping functions (phase), respectively. Overall there is sig-

nificant difference between the original functions and the

aligned functions. With the large amount of phase variability,

the temporal structure of the gait will be lost in the analysis.

As a result, cross-sectional methods without alignment will

not capture this important difference in the functions, which

can lead to lower predictive power of any developed models.

The first row in Table 6 presents the calculated mean proba-

bility of classification (PC) using 5-fold cross-validation. For

this data set, we use five principal components resulting in a

five-dimensional model for all four methods. In the table we

present the mean of the PC across the folds, along with the

standard deviation. We compare the three elastic versions and

standard logistic fPCR and the largest PC is shown in bold.

The vertical elastic logistic fPCR method has the largest PC

and all three elastic methods have a higher PC than the stan-

dard method in predicting if the subject has Parkinson’s from

the gait measurement. This suggests that a large portion of the

information is contained in the amplitude variability.

6.3 TwoLead ECG Data Set

The TwoLead ECG data set, is a collection of ECG mea-

surements from the MIT-BIH Long-Term ECG Database

available as well from Physionet, which contains long-term

ECG measurements with beat annotations. Heartbeats were

extracted that were annotated normal and abnormal.

Figure 8A presents the original ECG measurements. Again,

there appears to be significant phase variability between func-

tional measurements due to timing uncertainty across collec-

tions. Figure 8B and C show the aligned functions (amplitude)

and warping functions (phase), respectively. Overall there

is a noticeable alignment and better definition of the wave

structure.
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TABLE 5 Calculated SSE values using four different fPCR methods for the sonar data set

Elastic joint Elastic vertical Elastic horizontal Standard

SSE 0.1210 (0.0472) 0.1497 (0.1399) 0.1597 (0.0485) 0.1908 (0.1184)
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FIGURE 7 Alignment of the gait data set. (A) Original functions. (B) Aligned functions (amplitude). (C) Warping functions (phase)

TABLE 6 Calculated probability of correct classification using four different logistic fPCR methods for three
different data sets

Elastic joint Elastic vertical Elastic horizontal Standard

Gait 0.6467 (0.0321) 0.6900 (0.0465) 0.6333 (0.0425) 0.4300 (0.0923)

TwoLead ECG 0.9113 (0.0125) 0.9845 (0.0163) 0.9156 (0.0146) 0.8012 (0.0133)

ECGFiveDays 0.9570 (0.0228) 0.8902 (0.0462) 0.8473 (0.0429) 0.9061 (0.0297)

The second row in Table 6 presents the mean PC and stan-

dard deviation for this data set from 5-fold cross-validation.

As in the previous analysis, we use five principal components

resulting in a five-dimensional model for all four methods.

The vertical elastic logistic fPCR method produced the largest

PC and all three elastic methods have higher PC than the

standard method.

6.4 ECGFiveDays Data Set

The ECGFiveDays data set is a collection of ECG measure-

ments from a 67-year old male. There are two classes which

are simply the data of the ECG measurements which are

5 days apart. The task is then to distinguish between the 2 days

as the wandering baseline was not removed from the record-

ings. The data set is the ECGFiveDays from the UCR Time

Series Classification Database [18]. Moreover, the previous

two data sets can also be obtained from the UCR database

under the names ECG200 and TwoLeadECG, respectively.

Figure 9A presents the original ECG measurements from

the ECGFiveDays set. Again, there appears to be some phase

variability between functional measurements due to timing

uncertainty across collections. Figure 9B and C shows the

aligned functions (amplitude) and warping functions (phase),

respectively. Overall there is a noticeable alignment and

separation of the two classes in both the aligned functions and

the warping functions.

The last row in Table 6 presents the calculated mean PC

and standard deviation from 5-fold cross-validation. Again for

this data set, we use five principal components resulting in a

five-dimensional model for all four methods. For this data the

joint elastic fPCR method produced the largest PC. This sug-

gests that there is a combination of both phase and amplitude

that contribute to correct classification, which is not captured

by the standard method.

6.5 Gaitndd data set

The Gaitndd data set is a collection of gait measurements

for patients having Parkinson’s disease, Amyotrophic lateral

sclerosis, Huntington’s disease, and healthy controls and is

from the gaitndd data set on Physionet [12]. This database

contains gait measurements from 15, 20, 13, and 16 patients

for the respective disease classes. The gait was measured

using vertical ground reaction force records of subjects as they

walked at their usual pace.

Figure 10A presents the original gait measurements and

are colored for the different classes. There is a large amount

of phase and amplitude variability between the functional

measurements. Figure 10B and C shows the aligned func-

tions (amplitude) and warping functions (phase), respectively.

Overall there is a large improvement in the structure after

alignment some class definition can be noticed in the func-

tions.
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FIGURE 8 Alignment of the TwoLead ECG data set. (A) Original functions. (B) Aligned functions (amplitude). (C) Warping functions (phase)
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FIGURE 9 Alignment of the ECGFiveDays data set. (A) Original functions. (B) Aligned functions (amplitude). (C) Warping functions (phase)
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FIGURE 10 Alignment of the Gaitndd data set. (A) Original functions. (B) Aligned functions (amplitude). (C) Warping functions (phase)

The first row in Table 7 presents the calculated mean PC

and standard deviation. For this data set, we use 10 principal

components resulting in a 10-dimensional model for all four

methods. The vertical elastic fPCR method and all three elas-

tic methods have higher PC than the standard method. Given

that the vertical has the largest PC, suggests there is a large

amplitude component in how each disease affects the gait.

6.6 CinC ECG Data Set
The last data set is a collection of ECG measurements from

multiple torso-surface sites. There are measurements from

four different people which are the four different classes. The

data set is from the 2007 Physionet CinC challenge and is

also found as the CinC data set from the UCR Time Series

Classification Database [18].
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TABLE 7 Calculated probability of correct classification using four different mulitnomial logistic fPCR
methods for two different data sets

Elastic joint Elastic vertical Elastic horizontal Standard

Gaitndd 0.3949 (0.0648) 0.4888 (0.0326) 0.3645 (0.0398) 0.3123 (0.0413)

CinC ECG 0.6785 (0.0403) 0.6342 (0.0311) 0.6954 (0.0452) 0.3297 (0.0374)
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FIGURE 11 Alignment of the CinC ECG data set. (A) Original functions. (B) Aligned functions (amplitude). (C) Warping functions (phase)

Figure 11A presents the original ECG measurements and

are colored for the different classes. There is a large phase and

amplitude variability between the functional measurements.

Figure 11B and C shows the aligned functions (amplitude)

and warping functions (phase), respectively. Overall there

is a large improvement in the structure after alignment and

noticeable class separation in the warping functions. This

suggests that the phase will have a large contribution to the

classification performance.

The last row in Table 7 presents the calculated mean PC

and SD using 5-fold cross-validation. For this data set, we use

10 principal components resulting in a 10-dimensional model

for all four methods. The largest PC is the horizontal elas-

tic fPCR method and all three elastic methods have higher

PC than the standard method. As was noted from the align-

ment, this suggests there is a large phase component which

contributes to the separation of the classes. When accounting

for this variability properly, the performance of correct clas-

sification is dramatically larger than just performing standard

multinomial fPCR.

7 CONCLUSION AND FUTURE WORK

The statistical modeling and classification of functional data

with phase variability is a challenging task. We have proposed

a new fPCR approach that addresses the problem of reg-

istering and modeling functions in one elastic-framework.

We demonstrated three fPCA methods: (a) joint, (b) verti-

cal, and (c) horizontal that can be used depending on the

type of data encountered. This enabled the implementation

of a regression model that is geometrically motivated. We

demonstrated the applicability of these models on a three

different simulated examples that contain different types

of variability as well as seven real data examples with sig-

nificant amplitude and phase variabilities. In all cases, we

illustrated improvements in prediction power of the proposed

models.

We have identified several directions for future work. First,

we will explore the application of robust estimation meth-

ods applied to the elastic fPCA methods. Second, in many

applications, the functional data of interest may be more com-

plex than the simple univariate functions considered in this

work; some examples include shapes of curves, surfaces, and

images. These more complicated data objects often exhibit

different sources of variability, which must be taken into

account when computing regression models.
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